I would like to thank all the researchers referenced herein for their patience and persistence in making discoveries relevant to the subjects covered in this book. Without their research and the research of those who preceded them there would be no information on how to prevent Alzheimer’s, autism, and stroke.

1. Alzheimer, A.; Uber eine eigenartige erkrankung der hirnrinde; Zentralbl Nervenheit Psychiatr; 30, 177179 (1907)
2. Exley, C., and Vickers, T.; Elevated brain aluminum and early onset Alzheimer’s disease in an individual occupationally exposed to aluminum: a case report; J. Med. Case Reports; 8:41 (2014)
3. House, E., et al.; Aluminum, iron, and copper in human brain tissues donated to the Medical Research Council’s cognitive functioning and ageing study; Metallomics; Jan. 4(1):56-65 (2012)
4. Alzheimer’s Organization website 2015
5. Funk, C.; Studies on pellagra’ The influence of the milling of maize on the chemical composition and nutritive value of the meal; J. Physiol.; 47:389-92 (1913)
6. Thompson, W.G.; Practical dietetics with special reference to diet in disease; D. Appleton and Co., New York (1895)
7. Humphry, G.M., Old Age: The results of information received respecting nearly nine hundred persons who had attained the age of eighty years, including seventy-four centenarians; MacMillan and Bowes, Cambridge, UK, 1889
8. Blansjaar, B.A., Thomassen, R., VanSchaick, H.W.; Prevalence of dementia in centenarians; Int. J. of Geriatric Psychiatry, 15(3):219-25 (2000)
9. Poirier, J., et al.; Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease; Neurobiol. of Aging; 35:S3-S10 (2014)
10. UN World Assembly on Ageing; World Population Ageing 1950-2050; Chapter IV – Demographic profile of the older population (2002)
11. Plassman, B.L., et al.; Prevalence of Dementia in the United States: The ageing, demographics, and memory study; Neuroepidemiology; 29:125-32 (2007)
12. Deane, R., et al.; apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain; J. Clin. Invest.; doi:10.1172/JCI36663
13. Nee, L.E., et al.; Dementia of the Alzheimer type: clinical and family study of 22 twin pairs; Neurology, Mar., 37(3):359-63 (1987)
14. Langergraber, K.E., et al.; Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution; PNAS; Sept.; 109(39):15716-15721 (2012)
15. Dahlgren, K.N., et al.; Oligomeric and fibrillary species of amyloid-β peptides differentially affect neuronal viability; J. Biol. Chem.; Aug., 277(35):3206-53 (2002)
16. Drago, D.; Aluminum modulates effects of beta-amyloid1-42 on neuronal calcium homeostasis and mitochondrial functioning and is altered in a triple transgenic mouse model of Alzhiemer’s disease; Rejuvenation Reas.; 11(5):861-871 (2008)
17. Mantyn, P.W., et al.; Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide; J. Neurochem; Sep.; 61(3):1171-4 (1993)
18. Kuo, Y-M., et al.; Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer’s disease brains; Feb., J. Biol. Chem.; 271(8):4077-81 (1996)
19. Arriagada P.V., et al.; Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease; Neurology, 42:3 631 (1992)
20. Sun X-Y, et al.; Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A); J Biolog Chem; 287,14:11174-82 (2012)
21. Mutter J, Curth, A, Naumann J, Deth R, Walach H; Does inorganic mercury play a role in Alxheimer’s Disease? A systematic review and an integrated molecular mechanism; J Alzh Dis; 22:357-74 (2010)
22. Yamamoto, H., et al.; Dephosphorylation of tau factor by protein phosphatase 2A in synaptosomal cytosol fractions, and inhibition by alumunim; J. Neuroscience; 55:683-90 (1990)
23. Langui, D., et al.; Effects of aluminum chloride on cultured cells from rat brain hemispheres; 438(1-2):67-76 (1988)
24. Savory, J., et al.; Reversal by desferrioxamine of tau protein aggregates following two days of treatment in aluminum-induced neurofibrillary degeneration in rabbit – implications for clinical trials in Alsheimer’s disease; Neurotoxicology; 19(2):209-14 (1998)
25. Leterrier, J.F., et al.; A molecular mechanism for the induction of neurofilament bundling by aluminum ions; J. Neurochemistry; 58(6):2060-70 (1992)
26. Crapper, D.R., Krishnan, S.S., Dalton, A.J.; Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration; Science, May, 180(4085):511-3 (1973)
27. Perl, D.P. and Brody, A.R.; Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons; Science; 208(4441), 297-99 (1980)
28. Shimizu, H., et al.; A correlative study of the aluminum content and aging changes of the brain in non-demented elderly subjects; Nihon Ronen Igakkai Zasshi; Dec.; 31(12)950-60 (1994)
29. Jansson, E.T.; Aluminum exposure and Alzheimer’s disease; J. Alzheimer’s Dis.; Dec.; 2(6)541-49 (2001)
30. Luo, Y., et al.; Altered expression of Abeta metabolism-associated molecules from D-galactose/AlCl(3) induced mouse brain; Mech. Ageing Dev. Apr.; 130(4):248-52 (2008)
31. Liang, R.F., et al.; Impact of sub-chronic aluminum-maltolate exposure on catabolism of amyloid precursor protein in rats; Biomed. Environ. Sci.; 26(6):445-52 (2013)
32. Liu, Q., et al.; Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1; Neuron; 56:66-78 (2007)
33. Pluta, R., et al.; Sporadic Alzheimer’s disease begins as episodes of brain ischemia and ischemically dysregulated Alzheimer’s disease genes; Mo. Neurobiol.; 48:500-515 (2013)
34. Forbes, W.F., and McLachlan, D.R.C.; Further thoughts on the aluminum-Alzheimer’s disease link; J. Epidemiol. Community Health; 50:401-3 (1996)
35. Varner, J.A., et al.; Chronic administration of aluminum-fluoride or sodium-fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity; Brian Res.; 784:284-8 (1998)
36. Bellia, J.P., Birchall, J.D., Roberts, N.B.; The role of silicic acid in the renal excretion of aluminum; Ann. Clin. Lab. Sci.; June, 26(3):227-33 (1996)
37. Exley, C., at. al.; Non-invasive therapy to reduce the body burden of aluminum in Alzheimer’s disease; J. Alzheimers Dis.; Sept., 10(1):17-24 (2006)
38. Davenward, S., et al.; Silicon-rich mineral water as a non-invasive test of the ‘aluminum hypothesis’ in Alzheimer’s disease; J. Alzheimer’s Dis.; 33(2):423-30 (2013)
39. Exley, C, Human Exposure to Aluminum; Environ. Sci.: Processes Impacts, 15:1807-16 (2013)
40. Divine, K.K., et al.; Quantitative particle-induced x-ray emission imaging of rat olfactory epithelium applied to the permeability of rat epithelium to inhaled aluminum; Chem. Re. Toxicol.; 12(7):575-81 (1999)
41. Sunderman, F.W. Jr.; Nasal toxicity, carcinogenicity, and olfactory uptake of metals; Annals Clin. Lab. Sci.; 31(1):3-24 (2001)
42. Zatta, P., et al.; Deposition of aluminum in brain tissues of rats exposed to inhalation of aluminum acetylacetonate; Neuroreport; Sept.; 4(9):1119-22 (1993)
43. Priest, N.D.; The biological behavior and bioavailability of aluminum in man, with special reference to studies employing aluminum-26 as a tracer: a review and study update; J. Environ. Monit,; 6:375-403 (2004)
44. Walton, J.R.; Cognitive deterioration and associated pathology induced by chronic low-level aluminum ingestion in a translational rat model provides and explanation of Alzheimer’s disease, tests for susceptibility and avenues for treatment; Int. J. Alz. Dis.; 2012, Article ID 914947, 17 pages ( 2012)
45. Exley, C. and House, E.R.; Aluminum in the Human Brain; Monatsh Chem.; 42:357-63 (2011)
46. Morris, C.M., et al.; Comparison of the regional distribution of transferrin receptors and aluminum in the forebrain of chronic renal dialysis patients; J. Neurol. Sci.; Dec.; 94(1-3):295-306 (1989)
47. Trapp, G.A.; Plasma aluminum if bound to transferrin; Life Sci; 19:295-98 (1983)
48. Ohman, L.O., Martin, R.B.; Citrate as the main small molecule binding Al3+ in serum; Clin Chem; 40:598-601 (1994)
49. Bondy, S.C.; Prolonged exposure to low levels of aluminum leads to changes associated with brain ageing and neurodegeneration; Toxicology, Jan., 315:1-7 (2014)
50. Mirza, A., et al.; Aluminum in brain tissue in familial Alzheimer’s disease (Preprint); J. Trace Elements in Medicine and Biology; Mar.; 40:30-36 (2017)
51. Edwardson, J.A., et al.; Effect of silicon on gastrointestinal absorption of aluminum; The Lancet; 342(8865):211-12 (1993)
52. Moore, P.B.; et al.; Absorption of aluminum-26 in Alzheimer’s disease, measured using accelerator mass spectrometry; 11:66-69 (2000)
53. Taylor, G.A., et al.; Gastrointestinal absorption of aluminum in Alzheimer’s disease: response to aluminum citrate; Age Ageing; Mar.; 21(2):81-90 (1992)
54. Virk, S. A., and Eslick, G.D.; Aluminum levels in brain, serum, and cerebrospinal fluid are higher in Alzheimer’s disease cases than in controls: A series of meta-analyses; J. Alzheimer’s Disease; 47(3):629-38 (2015)
55. Moreira, P.I., et al.; Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology; Biochim. Biophys. Acta; 1802:2-10 (2010)
56. Zatta, P., Lain E., Cagnolini C.; Effects of aluminum on activity of Krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate; Eur J Biochem; 267:3049-55 (2000)
57. Mailloux, R.J., et al.; Aluminum toxicity elicits a dysfunctional TCA cycle and succinate accumulation in hepatocytes; J. Biochem. Mol. Toxicol.; 20(4):198-208 (2006)
58. Pogue, A.I., et al.; Metal-sulfate induced generation of ROS in human brain cells: detection using an isomeric mixture of 5- and 6-carboxy-2’,7’-dichlorofluoresein diacetate (carboxy-DCFDA) as a cell permeant tracer, Int. J. Mol.; 13:9615-26 (2012)
59. Scott, E.M., et al.; Purification and properties of glutathione reductase of human erythrocytes; J. Biol. Chem.; Dec.; 238:3928-33 (1963)
60. Yamamoto, Y., et al.; Alunimum toxicity is associated with mitochondrial dysfunction and production of reactive oxygen species in plant cells; Plant Physio.l; 128:63-72 (2002)
61. Braak, H., and Braak, E.; Neuropathological staging of Alzheimer-related changes; Acta Neuropathol.; 82:239-259 (1991)
62. Kahn, U.A.; et al.; Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease; Nature Neuroscience; 17:304-11 (2014)
63. Scoville, W.B., and Milner, B.; Loss of recent memory after bilateral hippocampus lesions; J. Neurol. Neurosurg. Psychiat.; 20:11-21 (1957)
64. Willhite, C.C., et al.; Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nonosclae aluminum, aluminum oxides, aluminum hydroxide and its soluble salts; Crit. Rev. Toxicol,; Oct.; Suppl. 44(S4):1-80 (2014)
65. Rogers, M.A.M. and Simon, D.G.; A preliminary study of dietary aluminum intake and risk of Alzheimer’s disease; Age and Ageing; 28:205-9 (1999)
66. Yokel, R.A.; Aluminum in food – The nature and contribution of food additives; Univ. Kentucky, Pharmaceutical Sciences Faculty Publications; 31 (2012)
67. Tomljenovic, L.; Aluminum and Alzheimer’s Disease: After a century of controversy, is there a plausible link?; J. Alzheimer’s Disease, 23, 567-98 (2011)
68. WHO – Aluminum in Drinking Water WHO/HSE/WSH/10.01/13 (2010)
69. WHO – Joint FAO/WHO Expert Committee on Food Additives – Summary Report, July 4, 2011
70. Needleman, H.L.; The case of Deborah Rice: who is the Environmental Protection Agency protecting?; PLoS Biol. 6, e129,
71. McLachlen, D. R. C., et al.; Intramuscular desferrioxamine in patients with Alzheimer’s disease; The Lancet; 337(8753):1304-1308 (1991)
72. Hill, A.B.; The environment and disease: Association or causation?; Proc Royal Soc. Med B; 58:295-300 (1965)
73. Van Reekum, R.; et al.; Applying Bradford Hill’s criteria for causation to neuropsychiatry: Challenges and opportunities; J. Neuropsychiatry Clin. Neurosci.; 13:318-25 (2001)
74. Walton,J.R.; Chronic aluminum intake causes Alzheimer’s disease: Applying Sir Austin Bradford Hill’s causality criteria; J. Alzheimer’s Disease; 40:765-838 (2014)
75. McLachlan, D.R.C., et al.; Risk for neuropathologically confirmed Alzheimer’s disease and residual aluminum in municipal drinking water employing weighted residential histories; Neurology, 46:401-5 (1996)
76. Rondeau, V., et al.; Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort, Am. J. Epidemiol. 169:489-96 (2009)
77. Gauthier, E., et al.; Aluminum forms in drinking water and risk of Alzheimer’s disease; Environ. Res.; 84, 236-46 (2000)
78. Bondy, S.C.; The neurotoxicity of environmental aluminum is still an issue; Neurotoicology; 31:575-81 (2010)
79. Flaten, T.P.; Aluminum as a risk factor in Alzheimer’s disease, with emphasis on drinking water; Brain Res. Bull.; May; 55(2):187-96 (2001)
80. Martyn, C.N., et al.; Geographic relation between Alzheimer’s disease and aluminum in drinking water; Lancet, 1:59-62 (1989)
81. Flaten, T.P.; Geographical associations between aluminum in drinking water and death rates with dementia (including Alzheimer’s disease),Parkinson’s disease and amyotrophic lateral sclerosis in Norway; Environ. Geochem. Health; 12:152-167 (1990)
82. Neri, L.C., and Hewitt, D.; Aluminum, Alzheimer’s disease, and drinking water; Lancet 338:390, (1991)
83. WHO – Joint FAO/WHO Expert Committee on Food Additives – Summary Report, July 4, 2011
84. Steinhausen, C., et al.; Investigation of the aluminum biokinetics in humans: a 26Al tracer study; Food Chem. Toxicol.; Mar.; 42(3):363-71 (2004)
85. De Sole, I.P., et al.; Possible relationship between Al/ferritin complex and Alzheimer’s disease; Clin. Biochem.; 46:89-93 (2013)
86. Andrasi, E., et al.; Brain Al, Mg, and P contents of control and Alzheimer-diseased patients; J. Alzheimer’s Dis.; 7:273-84 (2005)
87. Rusina, R., et al.; Higher aluminum concentrations in Alzheimer’s disease after Box-Cox data transformation; Neurotox. Res.; 20, 329-33 (2011)
88. Xu, N., et al.; Brain aluminum in Alzheimer’s disease using an improved GFAAS method; Neurotoxicology; 13:735-43 (1992)
89. Arnold, S.E., et al.; The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease; Cereb. Cortex; 1, 103-116 (1991)
90. Hyman, B.T., et al.; Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation; Science; 225:1168-70 (1984)
91. Van Hoesen, G.W., et al.; Entorhinal cortex pathology in Alzheimer’s disease; Hippocampus; 1:1-8 (1996)
92. Gomez-Isla, T.; et al.; Profound loss of layer II entorhinal cortex neurons in very mild Alzheimer’s disease; J. Neurosci.; 16:4491-4500 (1996)
93. Coffey, C.E., et al.; Quantitative cerebral anatomy of the aging human brain; Neurology; Mar.; 42(3):527 (1992)
94. Fjell, A.M., et al.; One-year brain atrophy evident in healthy aging; J. Neurosci.; Dec.; 29(48):15223-31 (2009)
95. Bauman, M.L., and Kemper, T.L.; The neurobiology of autism; John Hopkins University Press; Structural Brain Anatomy in Autism: What is the Evidence? Chapt. 9:121-35 (2005)
96. Papez, J.W.; A proposed mechanism for emotion; Arch Neuro. Psychiatry; 38:725-43 (1937)
97. Kawas, C., et al.; Multiple pathologies are common and related to dementia in the oldest-old: The 90+ study; Neurology; July 85(6) (2015)
98. Lukiw, W.J.; Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture; J. Inorg. Biochem.; Sept.; 99(9):1895-8 (2005)
99. Sontage J-M, et al.; Folate deficiency induces in vitro and mouse brain region-specific downregulation of leucine carboxyl methyltransferase-1 and protein phosphatase 2A B subunit expression that correlate with enhanced tau phosphorylation; J Neurosci; 28:11477-87 (2008)
100. Vogelsberg-Ragaglia, V., et al.; PP2A mRNA expression is quantitatively decreased in Alzheimer’s disease hippocampus; Exp. Neurol.; 168:402-12 (2001)
101. Zhang, L., et al.; Aluminum chloride impairs long-term memory and downregulates cAMP-PKA-CREB signaling in rats; Toxicology; Sep.; 323:95-108 (2014)
102. Wang, B.; et al.; Disturbance of intracellular calcium homeostasis and CaMKII/CREB signaling is associated with learning and memory impairments induced by chronic aluminum exposure; Neurotox. Res.; 26:52-63 (2014)
103. Pugazhenthi, S.; et al.; Downregulation of CREB expression in Alzheimer’s brain and in AB-treated rat hippocampal neurons; Mol. Neuroddegen.; 6:60 (2011)
104. Sun, Z.Z., et al.; Alteration of Aβ metabolism-related molecules in predementia induced by AlCl3 and D-galactose; Age; 31:277-284 (2009)
105. Farasani, A., and Darbre, P.D.; Effects of aluminum chloride and aluminum chlorohydrate on DNA repair in MCF-10A immortalized non-transformed human breast epithelial cells; J. Inorg. Biochem.; Aug.; (2015)
106. Suberbielle, E.; DNA repair factor BRCA1 depletion occurs in Alzheimer’s brains and impairs cognitive function in mice; Nature Comm.; Nov.; 1-14 (2015)
107. Huen, M. S. Y., et al.; BRCA1 and its toolbox for the maintenance of genome integrity; Nat. Rev. Mol. Cell Biol.; Feb.; 11(2):138-48 (2010)
108. Muratore, C. R., et al.; Age dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism; PLoS One; 8(2) (2013)
109. Tsunoda, M. and Sharma, R.P,; Modulation of tumor necrosis factor alpha expression in mouse brain after exposure to aluminum in drinking water; Arch. Toxicol.; Nov.; 73(8-9):419-26 (1999)
110. Miki, Y., et al.; A strong candidate for the breast and ovarian cancer susceptibility gene BRAC1; Science; Oct.; 266(5182):66-71 (1994)
111. Rosen, E.M., Fan, S., Goldberg, I.D.; BRAC1 and prostate cancer; Cancer Invest.; 19(4):396-412 (2001)
112. Jensen-Jarolim, E.; Aluminum in allergies and allergen immunotherapy; World Allergy Organization J.; 8(7)1-6 (2015)
113. Makesbery, W.R., et al.; Brain trace elements concentrations in aging; Neurobiol. Aging; 5:19-28 (1984)
114. Makesbery, W.R., et al.; Instrumental neutron activation analysis of brain aluminum in Alzheimer’s disease and aging; Ann. Neurol.; 10:511-16 (1981)
115. James, G.W.B.; The treatment of senile insanity. I. Pre-senile mental disorders; Alzheimer’s dementia; Lancet ii, 820-21 (1926)
116. Rothschild, D.; Alzheimer’s disease. A clinicopathologic study of five cases; Am. J. Psychiatry; 91:485-519 (1934)
117. National Center for Health Statistics; Death rates by 10-year age groups and age-adjusted death rates for 113 selected causes, race and sex: United States, 1979-98. CDC/NCHS, National Vital Statistics System, Table HIST001R (2003), at Accessed 11/3/2015.
118. Tejada-Vera, B.; Mortality from Alzheimer’s disease in the United States. Data for 2000 and 2010. NCHS data brief, no. 116. National Center for Health Statistics, Hyattsville, MD (2013)
119. Cullen, J.M., and Allwood, J.M.; Mapping the global flow of aluminum: from liquid to end-use goods; Environ. Sci. Technol.; Apr.; 47(7):3057-64 (2013)
120. Flaten, T.P.; Geographical associations between aluminium in drinking water and death rates with dementia (including Alzheimer’s disease), Parkinson’s disease and amyotrophic lateral sclerosis in Norway; Environ. Geochem. Health; 12:152-167 (1990)
121. Zhang, Y. Rosenberg, P.A.; The essential nutrient pyrroloquinoline quinone may act as a neuroprotectant by suppressing peroxynitrite formation; Eur J Neurosci; Sep.; 16(6):1015-24 (2002)
122. El-Aleem, S.A., et al.; Upregulation of the inducible nirtic oxide synthase in rat hippocampus in a model of Alzheimer’s disease: A possible mechanism of aluminum induced Alzheimer’s; Egypt. J. Histol.; 31(1):173-180 (2008)
123. Julka, D., and Gill, K.D.; Altered calcium homeostasis – a possible mechanism of aluminum-induced neurotoxcity; Biochimica Biophysica Acta; 1315:47-54 (1996)
124. Hebb, D.O.; The Organization of Behavior; “The first stage of perception: growth of the assembly”; Introduction and Chapter 4; Wiley, N.Y.; pp xi-xix and 60-78 (1949)
125. Dan, Y., and Poo, M.-M.; Spike timing-dependent plasticity: from synapse to perception; Physiol. Rev.; 86:1033-48 (2006)
126. Siegel, N., and Haug, A.; Aluminum-induced inhibition of calmodulin-regulated phosphodiesterase activity – Enzymatic and optical studies; Inorg. Chim. Acta; 79:230-31 (1983)
127. Levi, R., et al.; Immuno-detection of aluminum and aluminum induced conformational changes in calmodulin-implications in Alzheimer’s disease; Mol. Cell. Biochem.; 189:41-6 (1998)
128. Herzig, S., and Neumann, J.; Effects of serine/threonine protein phosphatases on ion channels in excitable membranes; Physiol. Rev.; 80:173-210 (2000)
129. Cordeiro, J.M., et al.; Aluminum-induced impairment of Ca2+ modulatory action on GABA transport brain cortex nerve terminals; J. Inorg. Biochem.; Sep.; 97(1):132-42 (2003)
130. Pennington, J.A., and Schoen, S.A.; Estimates of dietary exposure to aluminum; Food Addit. Contam.; Jan.-Feb.; 12(1):119-28 (1995)
131. Yokel, R.A., et al.; Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese; Food Chem. Toxicol.; June; 46(6):2261-66 (2008)
132. Walton, J.R.; Evidence for participation of aluminum in neurofibrillary tangle formation and growth in Alzheimer’s disease; J. Alzheimer’s Disease; 22:65-72 (2010)
133. Gong, C-X; et al.; Phosphorylation of micro-tubule associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease; J. Biol. Chem.; 275:5535-44 (2000)
134. Murphy, M.P., and LeVine III, Harry; Alzheimer’s disease and the B-Amyloid Peptide; J. Alzheimer’s Dis.; 19(1):311- 28 (2010)
135. Buxbaum, J.D., et al.; Protein phosphorylation inhibits production of Alzheimer amyloid B/A4 peptide, Proc. Natl. Acad. Sci. U.S.A.; Oct.; 90:9195-98 (1993)
136. Cochran, M., Elliott, D.C., Brennan, P., Chawtur, V.; Inhibition of protein kinase C activation by low concentrations of aluminum; Clin. Chim. Acta; 194:167-172 (1990)
137. Robinson, S.R., and Bishop, G.M.; Abeta as a bioflocculant: Implications for the amyloid hypothesis of Alzheimer’s disease; Neurobiol. Aging; 23, 1051-71 (2002)
138. Muma, N.A., and Singer, S.M.; Aluminum-induced neuropathology: Transient changes in microtubule-associated proteins; Neurotoxicology and Teratology; Nov.-Dec., 18(6):679-90 (1996)
139. Medana, I.M., and Esiri, M.M.; Axonal damage: A key predictor of outcome in human CNS diseases, Brain, 126:515-30 (2003)
140. Stokin, G.B., et al.; Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease; Science; 307:1282-88 (2005)
141. Montgomery, J., et al.; Gleaming, white, and deadly: using lead to track human exposure and geographic origins in the Roman period in Britain; Roman Diasporas, J. Roman Archeol.; Suppl. 78:199-226 (2010)
142. Crisponi, G., et al.; Human diseases related to aluminum overload; Monatsh. Chem.; 142:331-340 (2012)
143. Walton, J.R.; Cognitive deterioration and related neuropathology in older people with Alzheimer’s disease could result from life-long exposure to aluminum compounds; Chapter 2; Aging and vulnerability to environmental chemicals: Age-related disorders; Issues in Technology 16; Weiss, B., editor, RCS Publishing (2013)
144. Doty, R.L., et al.; Olfactory dysfunction in three neurodegenerative diseases; Geriatrics; Aug.; 46 Suppl. 1:47-51 (1991)
145. Hawkes, C.; Olfaction in neurodegenerative disorder; Mov. Disord.; Apr.; 18(4):364-72 (2003)
146. Bonanni, E., et al.; Daytime sleepiness in mild and moderate AD disease and its relationship with cognitive impairment; J. Sleep Res.; 14:311-17 (2005)
147. Ciulla, M.E., et. al; Episodes of fall asleep during day time in an elder woman with vascular dementia: Impact on cerebral ischeamic tolerance and utility of ECG Holter monitoring; The Open Cardiovascular Med. J.; 4:189-91 (2010)
148. Brambilla-Perrot, B.; The management of arrhythmic sincope; Minerva Medica; 100:195-211 (2009)
149. Walton, J.R.; Brain lesions comprised of aluminum-rich cells that lack microtubules may be associated with the cognitive deficit of Alzheimer’s disease; Neurotoxicology; 30:1059-69 (2009)
150. Maruyama, M., et al.; Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls; Neuron; Sept.; 79:1094-1108 (2013)
151. Higuchi, M., et al.; 19F and 1H MRI detection of amyloid beta plaques in vivo; Nat. Neurosci.; Apt.; 8(4):527-33 (2005)
152. Iqbal, K., et al.; Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly; J. Alzheimers Dis. Aug. 14(4):365-70 (2008)
153. Hoover, B.R., et al.; Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration; Neuron; 68(6); 1067-81 (2010)
154. Nixon, R.A., et al.; Aluminum inhibits calpain-mediated proteolysis and induces human neurofilament proteins to form protease-resistant high molecular weight complexes; J. Neurochem., Dec. 55(6):1950-9 (1990)
155. Shea, T.B. and Husan, T.; Inhibition of proteolysis enhances aluminum-induced perikaryal neurofilament accumulation but does not enhance tau accumulation; Mol. Chem. Neuropathology, 26:195 (1995)
156. Sontag E, Hladik C, Montgomery L, Luangpirom A, Mudrak, I, Ogis E, White C.L.; Downregulation of protein phosphatase 2A carboxy methylation and methyltransferase may contribute to Alzheimer’s disease pathogenesis; J Neuropathol Exp Neurol; 63:1080-91 (2004)
157. Sontag E, et al.; Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation; J Neurology; 27:2751-59 (2007)
158. Seshadri S., et al.; Plasma homocysteine as a risk factor for dementia and Alzheirmer’s Disease; New Engl J Med; 346:7, 476-83 (2002)
159. Spalding K.L. et al.; Dynamics of hippocampal neurogenesis in adult humans; Cell, 153:1219-27 (2013)
160. Frisone, G.B., et al.; Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla; Brain, 131,3266-76 (2008)
161. Kril, J.J., et al.; Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation; Acta. Neuropathologica; April, 103, 4:370-76 (2002)
162. Rao, M.V., et al.; J. Neurosci.; Specific calpain inhibition by calpastatin prevents taupathy and neurodegeneration and restores normal lifespan in tau P301L mice; J. Neurosci.; Jul. 9:34(28):9222-34 (2014)
163. Johnson, J.W., and Ascher, P.; Glycine potentiates the NMDA response in cultured mouse brain neurons; Nature; 325:529-31 (1987).
164. Han, N.-L. R., et al.; Comparison of taurine- and glycine-induced conformational changes in the M2-M3 domain of the glycine receptor; J. Biol. Chem.; 279:19559-65 (2004)
165. Horning, M.S., and Tombley, P.Q.; Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms; J. Neurophysiol., 86:1652-60 (2001)
166. Hosie, A.M., et al.; Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity; Nat. Neurosci.; Apr.; 6(4):362-9 (2003).
167. Woodin, M.A., et al.; Coincidence pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity; Neuron; Aug.; 39(5):807-20 (2003)
168. Bannai, H., et al.; Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics; Neuron; 62:670-82 (2009)
169. Deshpande, A., et al.;A role for synaptic zinc in activity-dependent Aβ oligomer formation and accumulation at excitatory synapses; J Neurosci; April 29(13):4004-15 (2009)
170. Lipton, S.A., et al.; Neurotoxcity associated with dual actions of homocysteine at the N-methyl-D-asparate receptor; Proc Natl Acad Sci; May 94:5923-28 (1997)
171. Lipton, S.A., Rosenberg P.A.; Excitatory amino acids as a final common pathway for neurologic disorders; N Engl Med; March 330:613-22 (1994)
172. Globus, M. Y.-T., Busto, R., Martinez, E., Valdés, I., Dietrich, W. D. and Ginsberg, M. D.; Comparative Effect of Transient Global Ischemia on Extracellular Levels of Glutamate, Glycine, and γ-Aminobutyric Acid in Vulnerable and Nonvulnerable Brain Regions in the Rat; J Neurochem, 57: 470–478 (1991)
173. Takeda, A.; Insight into glutamate excitotoxicity from synaptic zinc homeostasis; Int. J. Alzheimer’s Disease; ID 491597 (2011)
174. Simon, R.P., Swan J.H., Griffiths T., Meldrum B.S.; Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain; Science Nov. 16; 226(4676):850-2 (1984)
175. Lipton, S.A.; Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond; Nat Rev Drug Disc; Feb. 5:160-170 (2006)
176. Paula-Lima, A.C., et al.; Activation of GABAA receptors by taurine and muscimol blocks the neurotoxicity of beta-amyloid in rat hippocampal and cortical neurons; Neuropharmacology, 49(8):1140-8 (2005)
177. Louzada, P.R., et al.; Taurine prevents the neuorotoxicity of beta-amyloid and glutamate receptor agonists – activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders; FASEB J.; 18,511-8 (2004)
178. Malinow, R.; AMPA receptor trafficking and long-term potentiation; Phil. Trans. R. Soc. Lond. B; 358:707-14 (2003)
179. Sun, P., et al.; Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity; Genes Dev.; 8:2527-39 (1994).
180. Tokumitsu, H., et al.; Activation mechanisms for Ca2+/Calmodulin-dependent protein kinase IV; J. Biol. Chem.; 269(46):28640-47 (1994)
181. Silva, A.J., et al.; CREB and memory; Annu. Rev. Neurosci.; 21:127-49 (1998)
182. Bourtchuladze, R., et al.; Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein; Cell; Oct.; 79(1):59-68 (1994)
183. Carlyle, B.C.; cAMP-PKA phosphorylation of tau confers risk for degeneration in ageing association cortex; PNAS; April; 111(13):5036-41 (2014)
184. Sengupta, A., et al.; Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules; Arch. Biochen. Biophys.; Sep.; 357(2):299-309 (1998)
185. Braitwaite, S.P.; et al.; Protein phosphatases and Alzheimer’s disease; Prog. Mol. Biol. Transl. Sci.; 106:343-379 (2012)
186. Available at:
187. Available at:
188. Available at:
189. Available at:
190. Uh J., Yezhuvath U., Cheng Y., Lu H.; in vivo vascular hallmarks of diffuse leukoaraiosis; J Magn Reson Imaging; Jul; 32(1):184-90 (2010)
191. Schenk C., Wuerz T., Lerner A.J.; Small vessel disease and memory loss: what the clinician needs to know to preserve patient’s brain health; Curr Cardiol Rep; Dec; 15(12):427 (2013)
192. Grueter B.E., Schulz U.G.; Age-related cerebral white matter disease (leukoaraiosis) a review; Postgrad Med J; Feb; 88(1036):79-87 (2012)
193. Baezner H., Blahak C., Poggesi A., et al.; Association of gait and balance disorders with age-related white matter changes: the LADIS study; Neurology; Mar 18; 70(12):935-42 (2008)
194. Hassan A., Hunt B.J., O’Sullivan M., et al.; Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction; Brain.: Jan;127(Pt 1): 212-9 (2004)
195. Austin, R.C., Lentz, S.R., and Werstuck; Role of hyperhomocysteinemia in endothelial dysfuction and atherothrombic disease; Cell Death and Differentiation; 11:S56-S64 (2004)
196. Steinberg, D.; Low density lipoprotein oxidation and its pathobiological significance; J. Biol. Sci.; Aug.; 272(34):20963-6 (1997)
197. Gaballa, I.F., et al.; Dyslipidemia and disruption of L-carnitine in aluminum exposed workers; Egyptian J. Occup. Med.; 37(1):33-46 (2013)
198. Wald D.S., Law M., Morris J.K., Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ; 325(7374):1202 (2002)
199. Ji Y., et al.; Vitamin B supplementation, homocysteine levels and the risk of cerebrovascular disease: a meta-analysis; Neurology (2013)
200. Perry I.J., Refsum H., Morris R.W., Ebrahim S.B., Ueland P.M., Shaper A.G., Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet; 346:1395-8 (1995)
Note: This decade long study of 5661 men 40-69 year of age shows that 107 men who had a stroke also had an average 2.8μM/L higher level of homocysteine as compared with men who did not have a stroke. These results compliment a study that showed a 10% decreased risk of recurrent stroke over a 2 year period with an average 3μM/L decrease in homocysteine levels resulting from vitamin supplementation201.
201. Toole J.F., Malinow M.R., Chambless L.E., Spence J.D., Pettigrew L.C., Howard V.J., Sides E.G., Wang C.H., Stampfer M.; Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death; JAMA; 291: 565–575 (2004)
Note: An alternate conclusion based upon the data in this paper is that a 3μM/L drop in homocysteine due to B12 (6μg ), B6 (200μg), and folic acid (20μg) daily supplementation resulted in 10% lower risk of recurrent stroke and a 16% lower risk of death on average among 1853 patients with non-disabling cerebral infarction and higher level (e.g. 100 fold) supplementation is excessive, as these levels resulted in an insignificantly lower risk of 2% and 7% respectively with only a 2μM/L additional drop in homocysteine
202. Censori B., Partziguian T., Manara O., Poloni M.; Plasma homocysteine and severe white matter disease; Neurol Sci; Oct.; 28(5):259-63 (2007)
203. Sachdev P., Parslow R., Salonikas C., et al.; Homocysteine and the brain in midadult life: evidence for an increased risk of leukoaraiosis in men; Arch Neurol; Sep. 61(9): 1369-76 (2004)
204. Mailloux, R.J., Lemire, J., and Appanna, V.D.; Hepatic response to aluminum toxicity: dyslipidemia and liver diseases; Exp. Cell Res.; Oct.; 317(16):2231-8 (2011)
205. Lemire, J., et al.; The disruption of L-carnitine metabolism by aluminum toxicity and oxidative stress promotes dyslipidemia in human astrocytic and hepatic cells; Toxicol. Lett. Jun.; 203(3):219-26 (2011)
206. Waly, M., et al.; Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal; Mol. Psychiatry 9, 358-70 (2004)
207. Waly, M. I-A., and Deth, R.; Neurodevelopmental toxins deplete glutathione and inhibit folate and vitamin B12-dependent methionine synthase activity – a link between oxidative stress and autism; FASEB J; 22:894 1 (2008)
208. Kurth, T., et al.; Body mass index and the Risk of Stroke in Men; Ach Intern. Med.; Dec., 162:2557-62 (2002)
209. Chuang, Y-F, et al.; Midlife adiposity predicts earlier onset of Alzheimer’s dementia, neuropathology and presymptomatic cerebral amyloid accumulation; Mol. Psychiatry; Sept. (2015)
210. Bramble, D.M., and Lieberman, D.L.; Endurance running and the evolution of Homo; Nature, 432, 345-52 (2004)
211. With low CBS activity the brain can still make some glutathione and taurine because cystathionine levels in the human cortex are 40 times higher than other tissues147)148). High cystathionine levels in the brain may counteract the low activity of the enzyme CBL that converts cystathionine to cysteine. CBL’s enzyme activity is 100 times lower in the brain than in the liver149).
212. Lever, M., et al.; Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: An observational study; PLOS; DOI:10.1371 (2014)
213. Kirke, P.N., et al.: Impact of the MTHFR C677T polymorphism on risk of neural tube defects: case-control study; BMJ, 328:1535-6 (2004)
214. Herbert V., ed. Vitamin B12 deficiency. London: Royal Society of Medicine Press; Vitamin B12- An overview 1-81 (1999)
215. Pennypacker L.C., Allen R.H., Kelly J.P., Matthews L.M., Grigsby J., Kaye K., et al. High prevalence of cobalamin deficiency in elderly outpatients; J Am Geriatr Soc.; 40:1197–204 (1992)
216. Karnaze D.S., Carmel R.; Low serum cobalamin levels in primary degenerative dementia: do some patients harbor atypical cobalamin deficiency states? Arch Intern Med; 147:429—431 (1987)
217. Huang Y., et al.; Prehypertension and the Risk of Stroke: A Meta-analysis; Neurology; March 12, (2014)
218. Clarke R., Refsum H., Birks J., et al.; Screening for vitamin B12 and folate deficiency in older people; Am J Clin Nutr;77:1241–7 (2003)
219. Willems, F.F., et al.; Pharmacokinetic study on the utilization of 5-methyltetrahydrofolate and folic acid in patients with coronary artery disease; British J Pharmacol., 141, 825-30 (2004)
220. Lamers, Y., et al.; Red bood cell folate concentrations increase more after supplementation with [6S]-5-methyltetrahydrofolate than with folic acid in women of childbearing age; Am J Clin Nutr; 84:156-61 (2006)
221. Detopoulou P., et al.; Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the Attica Study; Am J Clin Nutr; 87:424-30 (2008)
222. Yang, H.T., et al.; Efficacy of folic acid supplementation in cardiovascular disease prevention: and updated meta-analysis of randomized control trials; Eur. J. Intern. Med.; 23(8)745-54 (2012)
223. Craig S.A.; Betaine in human nutrition; Am J Cliun Nutr; 80:539-49 (2004)
224. De Bree, A., et al.; Lifestyle factors and plasma homocysteine concentrations in a general population sample; Am. J. Epidemiology; 154(2):150-4 (2001)
225. Xiao, Y., et al.; Dietary protein and plasma total homocysteine, cysteine concentrations in coronary angiographic subjects; Nutr. J.; 12:144-54 (2013)
226. Haddad, E.H., et al.; Dietary intake and biochemical, hematological, and immune status of vegans compared with nonvegetarians; Am. J. Clin. Nutr.; 70(suppl):586S-93S (1999)
227. Kenyon, S.H., et al.; The effect of ethanol and its metabolites upon methionine synthase activity in vitro; Alcohol; May; 15(4):305-9 (1998)
228. Bleich, S., et al.; Moderate alcohol consumption in social drinkers raises plasma homocysteine levels – a contradiction of the French Paradox?; Alcohol Alcoholism; 36(3):189-92 (2001)
229. Thein S.S., Hamidon B.B., Teh H.S., Raymond A.A.; Leukoaraiosis as a predictor for mortality and morbidity after an acute ischaemic stroke: Singapore Med J; May; 48(5): 396-9 (2007)
230. Li H., Xu G., Xiong Y., et al.; Relationship between cerebral atherosclerosis and leukoaraiosis in aged patients: Results from DSA; J. Neuroimaging; Sep. 3 (2013)
231. Stuhlinger, M.C., et al.; Homocysteine impairs the nitric oxide synthase pathway – Role of asymmetric dimethylarginine; Circulation; 104:2569-75 (2001)
232. Welch N.G., Loscalzo J.; Homocysteine and atherosclerosis; N Engl J Med; 338:1042-50 (1998)
233. Mizrahi, E.H., et al.; Further evidence of interrelation between homocysteine and hypertension in stroke patients: a cross-sectional study; IMAJ, Vol. 5, 791-94 (2003)
234. Amarenco, P.; Lipid management in the prevention of stroke – review and updated meta-analysis of statins for stroke prevention; Lancet, 8(5):453-63 (2009)
235. Elkind, M., et al.; Lipid-lowering agent use at ischemic stroke onset is associated with decreased mortality; Neurology; July; 65(2):253-58 (2005)
236. Blanco, M., et al.; Statin treatment withdrawal in ischemic stroke; Neurology; Aug.; 69(9):904-10 (2007)
237. Leitersdorf, E.; Cholesterol absorption inhibition – filling an unmet need in lipid-lowering management; European Heart J Supplements; 3 (supplement E) E17-E23 (2001)
238. Davidson, M.H.; Ezetimibe coadministered with simvastatin in patients with primary hypercholesterolemia; J. Am. Coll. Cardiol.; Dec. 18; 40(12):2125-34 (2002)
239. Glossmann, H.H.; Origin of 7-dehydrocholesterol (provitamin D) in the skin; J. Investigative Dermat.; 130:1239-41 (2010)
240. Anagnostis, P., et al.; Comparative effect of Atorvastatin and Rosuvastatin on 25-hydroxy-vitamin D levels in non-diabetic patients with dyslipidaemia: A prospective random open-label pilot study; Open Cardio. Med. J.; 8:55-50 (2014)
241. Rejnmark, L., et al.; Simvastatin does not affect vitamin D status, but low vitamin D levels are associated with dyslipidemia: Results from a randomized, controlled trial; Internat. J. Endrocrin.; 2010, Article ID 957174 (2010)
242. Wolozin, B., et al.; Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease; BMC Medicine; 5:21-31 (2007)
243. Betterman, K., et al.; Statins, risk of dementia and cognitive function: Secondary analysis of the Ginkgo Evaluation of Memory Study (GEMS); J Stroke Cerebrovasc. Dis.; Aug.; 21(6):436-444 (2012)
244. Newman, H.A.I., et al: Serum chromium and angiographically determined coronary artery disease; Clin Chem; 24:541-544 (1978)
245. Simonoff, M., et al: Low plasma chromium in patients with coronary artery and heart diseases; Biol Trace Element Res; 6:431-439 (1984)
246. Press, R.I., et al.; The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects; West J. Med., Jan.; 152:41-5 (1990)
247. Armitage, J. et al.; The HPS2-THRIVE Collaborative Group. Effects of extended release niacin and laropiprant in high-risk patients; N Engl J Med; 371:203-12 (2014)
248. Bruckert, E., et al.; Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis; Atherosclerosis; June; 210(2):353-61 (2010)
249. Lisak, M., et al.; Hypertriglyceridemia as a possible independent risk factor for stroke; Acta. Clin. Croat.; Dec; 52(4):458-63 (2013)
250. Rubins, H.B., et al.; Reduction in stroke with Gemfibrozil in men with coronary heart disease and low HDL cholesterol; Circulation; 103:2828-2833 (2001)
251. Munoz-Aguirre, P., et al.; The effect of vitamin D supplementation on serum lipids in postmenopausal women with diabetes: A randomized controlled trial; Clin. Nutr.; Oct.; 34(5):799-804 (2015)
252. Harris, W.S.; n-3 Fatty acids and serum lipoproteins: human studies; A. J. Clin. Nutr.; 65(suppl.):1645S-54S (1997)
253. Bernstein, A.M., et al.; “Purified palmitoleic acid for the reduction of high-sensitivity C-reactive protein and serum lipids: a double-blinded, placebo controlled study; J. Clin. Lipidol.; 8(6):612-7 (2014)
254. Wei, M.J.; Effects of eicosapentaenoic acid versus docosahexanoic acid on serum lipids: a systematic review and meta-analysis; Curr. Atheroscler. Rep.; Dec.; 13(6):474-83 (2011)
255. Kawahara, M., Kato-negishi, M.; Link between aluminum and the pathogenesis of Alzheimer’s Disease: The integration of the aluminum and amyloid cascade hypotheses; Internat J Alz Disease; 2011:1-17; Article ID 276393 (2011)
256. Wolf, P.A., Abbott, R.D., Kannel, W.B.; Atrial fibrillation as an independent risk factor for stroke – the Framingham Study; Stroke, 22:983-88 (1991)
257. Figueiredo, J.C., et al.; Folic acid and risk of prostate cancer: Results from a randomized clinical trial; J. Natl. Cancer Inst; 101:432-5 (2009)
258. Lee, J.E., et al.; Are dietary choline and betaine intakes determinants of total homocysteine concentrations?; Am. J. Clin. Nutr.; 91:1303-10 (2010)
259. Niculescu, M.D., et al.; Diet, methyl donors and DNA methylation – interactions between dietary folate, methionine and choline; J. Nutr.; 132:2333S-5S (2002)
260. E.J. Corey and A. Tramontano; Total synthesis of the quinonoid alcohol dehydrogenase coenzyme (1) of methylotrophic bacteria; J. Am. Chem. Soc.; 103(18):5599-5600 (1981)
261. Hara, H., Hiramatsu, H., Adachi, T.; Pyrroloquinoline quinone is a potent neuroprotective nutrient against 6-hydroxydopamine-induced neurotoxicity; Neurochem Res; Mar. 32(3):489-95 (2007)
262. Nunome, K., et al.; Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes in oxidative status of DJ-1; Biol Pharm Bull; Jul.; 31(7):1321-6 (2008)
263. Hirakawa, A., Shimizu, K., Fukumitsu, H., Furukawa, S.,; Pyrolloquinoline quinone attenuates iNOS gene expression in the injured spinal cord; Biochem Biophys Res Commun; 378:308-312 (2009)
264. Rucker, R,, Chowanadisai, Nakano, M.; Potential physiological importance of pyroloquinoline quinone; Alt Med Rev; 14(3):268-77 (2009)
265. Ouchi, A., Nakano, M., Nagaoka, S., Mukai, K.; Kinetic study of the antioxidant activity of pyrroloquinolinequinol (PQQH(2), a reduced dorm of pyrroloquinolinequinone) in micellar solution; J. Agric Food Chem; Jan 57(2):450-6 (2009)
266. Chowanadisai, W., et al.; Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1a expression; J Biol Chem; Jan. 285(1):142-52 (2010)
267. Onyango, I.G., et al.; Regulation of neuron mitochondrial biogenesis and relevance to brain health; Biochim Biophys Acta; Jan.; 1802(1):228-34 (2010)
268. Murase, K., Hattori, A., Kohno, M., Hayashi, K.; Stimulation of nerve growth factor synthesis/secretion in mouse astroglial cells by coenzymes; Biochem Mol Biol Int; Jul.; 30(4):615-21 (1993)
269. Harris, C., et al.; Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects; J. Nutr. Biochem.; 24:2076-84 (2013)
270. Nakani, M., Ubukata, K., Yamamoto, T., Yamaguchi, H.; Effect of pyrroloquinoline quinone (PQQ) on mental status of middle-aged and elderly persons; Food Style; 21 13(7):50-3 (2009)
271. Jensen, et al.; The putative essential nutrient pyrroloquinoline quinone is neuroprotective in a rodent model of hypoxic/ischemic brain injury; Neuroscience; Sept. 62(2):399-406 (1994)
272. Zhang, Y., Feustel, P.J., Kimelberg, H.K.; Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat; Brain Res; June; 1094(1):200-6 (2006)
273. Kim, J., et al.; Pyrroloquinoline quinone inhibits the fibrillation of amyloid proteins; Prion; 4(1):26-31 (2010)
274. Kobayashi, M., et al.; Pyrroloquinoline quinone (PQQ) prevents fibril formation of alpha-synuclein; Biochem. Biophys. Research Comm; Oct., 349(3):1139-44 (2006)
275. Nakano, M., et al.; Acute and subchronic toxcity studies of pyrroloquinoline quinone (PQQ) disodium slat (BioPQQTM) in rats; Reg. Toxicol. Pharmacol.; Oct.; 70(1):107-121 (2014)
276. Nakano, M., et al.; Genotoxicity of pyrroloquinoline quinone (PQQ) disodium salt; Reg Tox Pharm; 67:189-97 (2013)
277. Kumazawa, T., et al.; Levels of pyrroloquinoline quinone in various foods; Biochem J; 307:331-3 (1995)
278. Noji, N., et al,; Simple and sensitive method for pyrroloquinoline quinone (PQQ) analysis in various foods using liquid chromatography/electrospray-ionization tandem mass spectrometry; J Agric Food Chem; Sep.; 55(18):7258-63 (2007)
279. Mitchell, A.E., Jones, A.D., Mercer, R.S., Rucker R.B.; Characterization of pyrroloquinoline quinone amino acid derivatives by electrospray ionization mass spectrometry and detection in human milk; Anal Biochem; May; 269(2):317-25 (1999)
280. Rodriguez, J.I., and Kern, J.K.; Evidence of microglial activation in autism and its possible role in brain underconnectivity, Neuron Glia Biology, 7(2-4):205-13 (2011)
281. Drubin, D.G., et al.; Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors; J Cell Biol; Nov.; 101:1799-1807 (1985)
282. Murase, K., Hattori, A., Kohono, M., Hayashi, K.; Stimulation of nerve growth factor synthesis/secretion on mouse astroglial cells by coenzymes, Biochem Mol Biol Int; Jul., 30(4):615-21 (1993)
283. Urakami, T., Tanaka, A., Yamaguchi, K., Tsuji, T., Niki, E.; Synthesis of esters of coenzyme PQQ and IPQ, and stimulation of nerve growth factor production; Biofactors, 5(3):139-46 (1995-1996)
284. Ren, Z., et al.; Mechanisms of brain injury with deep hypothermic circulatory arrest and protective effects of coenzyme Q10; J Thorac Cardiovasc Surg; Jul.; 108(1) 126-33 (1994)
285. Dumont, M., Kipiani, K., Yu, F.; Coenzyme Q decreases amyloid pathology and improves behavior in transgenic mouse model of Alzheimer’s disease; J Alzheimers Dis.; 27(1):211-23 (2011)
286. Lopez-Lluch, G., et al.; Is coenzyme Q a key factor in ageing? Mech Ageing Dev; Apr. 131(4):225-35 (2010)
287. Deichmann, R., Lavie, C., Andrews, S.; Coenzyme Q10 and statin-induced mitochondrial dysfunction; Oschner J; 10:16-21 (2010)
288. Hosoe, K., Kitano, M., Kishida, H., et al.; Study on safety and bioavailability of ubiquinol (Kaneka QH(trade mark)) after single and 4-week multiple oral administration to healthy volunteers; Regul Toxicol Pharmaco; Aug 17, 2006
289. Azik, F.M., et al.; A different interaction between parathyroid hormone, calcitriol, and serum aluminum in chronic kidney disease; a pilot study; Int. Urol. Nephrol.; 43:467-470 (2011)
290. Fernell, E., et al.; Autism spectrum disorder and low vitamin D at birth: a sibling control study; Molecular Autism; 6:3 (2015)
291. Morales, E., et al.; Vitamin D in pregnancy and attention deficit hyperactivity disorder-like symptoms in childhood; Epidemiology; Jul.; 26(4):458-65 (2015)
292. Littlerjohns, T.J., et. al; Vitamin D and the risk of dementia and Alzheimer’s disease; Am. Acad. Neurology; 1-9 Published Online (2014)
293. Miller, J.W., et al.; Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults; JAMA Neurology, Sep. (2015)
294. Buell, J.S., et al, 25-Hydroxyvitamin D, dementia, and cerebrovascular pathology in elders receiving home services; Neurology, 74:18-26 (2010)
295. Daubail, B., et al: Serum 25-hydroxyvitamin D predicts severity and prognosis in stroke patients; Eur J Neurol; Jan 20(1):57-61 (2013)
296. Garcion, E., et al,; New clues about vitamin D functions in the nervous system; Trends in Endrocrin Metab; 13(3):100-105 (2002)
297. Muir, S. W., et al.; Effect of vitamin D supplementation on muscle strength, gait, and balance in older adults; J. Am. Geriatrics Soc.; 59(12):2291-2300 (2011)
298. Cannell, J.J., Autism and vitamin D; Med. Hypotheses; 70(4):750-9 (2008)
299. Voet, D. and Voet, J.G.; Biochemistry. Vol. 1; Biomolecules, mechanism of action, and metabolism, 3rd. ed., 663-64, John Wiley & Sons (2004)
300. Rovertson, D.A., et al.; Animal model of aluminum induced osteomalcia: role of chronic renal failure; Kidney Int.; 23:327-35 (1983)
301. Goodman, W.G., et al.; Parenteral aluminum administration in the dog II. Induction of osteomalcia and effect on vitamin D metabolism; Kidney Int.; 25:370-75 (1984)
302. Adit, A., et al.; Demographic differences and trends of vitamin D insufficiency in the US population, 1988-2004; Arch. Intern. Med. 169(6):626-632 (2009)
303. Alfrey, A.C., et al.; Metabolism and toxicity of aluminum in renal failure; Am. J. Clin. Nutr.; 33:509-1516 (1980)
304. Mayor, G.H., et al.; Parathyroid hormone-mediated aluminum deposition and egress in the rat; Kidney Int.; Jan.; 17(1):40-4 (1980)
305. Constantini, S.; Distribution of aluminum following intraperitoneal injection of aluminum lactate in the rat; Pharmacol. Oxicol.; Jan.; 64(1):47-50 (1989)
306. Hirschberg, R., et al.; Organ distribution of aluminum in uremic rats: influence of parathyroid hormone and 1,25-dihydroxyvitamin D3; Miner Electrolyte Metab.; 11(2):106-10 (1985)
307. Quarles, L.D., et al.; Aluminum deposition at the osteoid-bone interface; J. Clin. Invest.; May; 75:1441-47 (1985)
308. Drueke, T.; et al.; Oral aluminum administration to uremic, hyperparathyroid, or vitamin D-supplemented rats; Nephron; 39:10-17 (1985)
309. Ittel, T.H.; et al.; Enhanced gastrointestinal absorption of aluminum in uraemia: Time course and effect of vitamin D; Nephrol. Dial. Transplant; 3(5):617-623 (1988)
310. Adler, A.A. and Berlyne, G.M.; Duodenal aluminum absorption in the rat: effect of vitamin D; Gastrintest. Liver Physiol.; 12:G209-G213 (1985)
311. Cox, K.A. and Dunn, M.A.; Aluminum toxicity alters the regulation of calbindin-D28k protein and mRNA expression in chick intestine; Am. Soc. Nutritional Sci.; Nov.; 2007-13 (2001)
312. Gross, M.L., et al.; Severe vitamin D deficiency in 6 Canadian First Nation formula-fed infants; Int. J. Circumpolar Health; Apr.; 72:20244 (2013)
313. Gallo, S., et al.; Effect of different dosages of oral vitamin D supplementation on vitamin D status in healthy, breastfed infants: a randomized trial; JAMA; 309(17):1785-92 (2013)
314. Casey, C. F., et al.; Vitamin D supplementation in infants, children, and adolescents; Am. Family Physician; Mar.; 81(6):745-48 (2010)
315. Wagner, G.L., et al.; High-dose D3 supplementation in a cohort of breastfeeding mothers and their infants: a 6-month follow-up pilot study; Breastfeed. Med.; Summer 1(2):59-70 (2006)
316. Hollis B.W., et al.; Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness; J. Bone Miner. Res.; Oct.; 26(10):2341-57 (2011)
317. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academy Press, 2010.
318. Turetaky, A., et al.; Low serum vitamin D is independently associated with larger lesion volumes after ischemic stroke; J. Stroke Cerebrovasc. Dis.; 24(7):1555-63 (2015)
319. Park, K.Y., et al.; Serum vitamin D status as a predictor of prognosis in patients with acute ischemic stroke; Cerebrovasc. Dis.; 4(1-2):73-8 (2015)
320. Tompkins, A.J., et al; Mitochondrial dysfunction in cardiac ischemia-reperfusion injury: ROS from complex I, without inhibition; Biochim Biophys Acta; 1762:223-231 (2006)
321. Chen, X.M., Chen, H.S., Xu, M.J., Shen, J.G.; Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury; Acta Pharacol Sin; Jan 34(1):67-77 (2013)
322. Balden, R., Selvamani, A., Sohrabji, F.; Vitamin D deficiency exacerbates experimental stroke injury and dysregulates ischemia-induced inflammation in adult rats; Endrocinology; May 153(5):2420-36 (2012)
323. Mosekilde, L.; Vitamin D and the elderly; Clin. Endrocrinol. (Oxf.); Mar.; 62(3):265-81 (2005)
324. Atlas, E., et al.; Comparison between daily supplementation doses of 200 versus 400 IU of vitamin D in infants; Eur. J.Pediatr.; Aug.; 172(8):1039-42 (2013)
325. Houghton, L.A., and Vieth, R.; The case against ergocalciferol (vitamin D3) as a vitamin supplement; Am. J. Clin. Nutr.; 84:694-7 (2006)
326. Cannell, J.J.; Autism causes prevention and treatment; Sunrise River Press (2015)
327. London, G.M., et al.; Arterial calcifications and bone histomorphometry in end-stage renal disease; J. Am. Soc. Nephrology; 15:1943-51 (2004)
328. Kudo, H., et al; Quantitative analysis of glutathione in human brain tumors; J Neurosurg, Apr 72(4):610-5 (1990)
329. Kumazawa, T., et al; Trace levels of pyrroloquinoline quinone in human and rat samples detected by gas chromatography/mass spectrometry; Biochem Biophys Acta; Dec 1156(1):62-6 (1992)
330. Zhang, Y., Rosenberg, P.A.; The essential nutrient pyrroloquinoline quinone may act as a neuroprotectant by suppressing peroxynitrite formation; Eur J Neurosci, Sep 16(6):1015-24 (2002)
331. Zhang, Q., et al; Pyrroloquinoline quinone protects rat brain cortex against acute glutamate induced neurotoxicity; Neurochem Res; Aug 38(8):1661-71 (2013)
332. Benrabh, H., et al.; Taurine transport at the blood-brain barrier: an in vivo brain perfusion study; Brain Res.; 692:57-65 (1995)
333. Miller, T.J., et. al.; Developmental changes in organic osmolytes in prenatal rat tissues; Comp. Biochem. Physiol. Part A. Mol. Integr. Physiol.; Jan.; 125(1):45-56 (2000)
334. Banay-Schwartz, et al.; Changes with aging in the levels of amino acids in rat CNS structural elements. II. Taurine and small neutral amino acids; Neurochem. Res.; 14:563-570 (1989)
335. Gebara, E., et al.; Taurine increases hippocampal neurogenesis in aging mice; Stem Cell Res.; May; 14(3):369-79 (2015)
336. Yamori, Y., et al.; Taurine as the nutritional factor for the longevity of the Japanese revealed by a world-wide epidemiological survey; Taurine 7, Vol 18, Azuma, J., Schaffer, S.W., Ito, T. (Eds.), Springer, Chapter 2, p13-25 (2009)
337. Menzie, J., Prentice, H., Wu, J.-Y.; Neuroprotective mechanisms of taurine against ischemic stroke; Brain Sci., 3, 877-907 (2013)
338. Kumari, N., Prentice, H., Wu, J.-J.-Y.; Taurine and its neuroprotective role; Taurine 8, Vol. 1: The nervous system, immune system, diabetes, and the cardiovascular system, El Idrissi, A, L’Amoreaux W.J. (Eds.), Springer, Chapter 2, p19-27 (2013)
339. El Idrissi, A.; Taurine increases mitochondrial buffering of calcium: role in neuroprotection; Amino Acids, 34, Feb. 2:321-28 (2008)
340. Ricci, L., et al.; Protection by taurine of rat brain cortical slices against oxygen glucose deprivation-and-reoxygenation-induced damage; Eur. J. Pharmacol.; Oct 25:621(1-3):26-32 (2009)
341. Flora, S.J.S., et al.; Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats; Oxidative Med. Cell. Long.; 1;1 39-45 (2008).
342. Flora, S.J.S., et al.: Combined administration of taurine and meso 2,3-dimercaptosuccinic acid in the treatment of chronic lead intoxication in rats; Hum. Exp. Toxicol.; April 23:4 157-166 (2004).
343. Kahtani, M.A.; Renal damage mediated by oxidative stress in mice treated with aluminum chloride: protective effects of taurine; J. Biol. Sci.; 10(7):584-95 (2010).
344. Abdel-Moneim, A.M.; Effects of taurine against histomorphological and ultrastructural changes in the testes of mice exposed to aluminum chloride; Arh. Hig. Rada Toksikol; 64:405-414 (2013)
345. Opinion of the Scientific Committee on Food – Additional information on “energy” drinks; SCF/CS/PLEN/ENDRINKS/16 Final (2003)
346. Trautwein, E.A. and Hayes, K.C.; Taurine concentrations in plasma and whole blood in humans: estimation of error fron intra- and inter-individual variation and sampling technique; Am. J. Clin. Nutr.; 52:758-64 (1990)
347. USDA Handbook No. 8
348. Pasantes-Morales, H., Lopez, I., Ysunza, A.; Taurine content in breast milk of Mexican women from urban and rural areas; Arch. Med. Res.; Spring: 26(1):47-52 (1995)
349. El-Sayed, W. M.; et al.; Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice; J. Hazard Mater.; Aug.; 192(2):880-6 (2011)
350. Barasch, E., et al.; Clinical significance of calcification of the fibrous skeleton of the heart and aortosclerosis in community dwelling elderly – The Cardiovascular Health Study – CHS; Am. Heart J.; Jan; 151(1):39-47 (2006)
351. Novaro, G.M., et al.; Plasma homocysteine and calcific aortic valve disease; Heart, 90:802-3 (2002)
352. Fusaro, M., et al.; Vitamin K, Veretebral fractures, vascular calcifications, and mortality – Vitamin K Italian – VIKI – dialysis study; J. Bone and Mineral Res.; Nov.; 27(22):2271-78 (2012)
353. Geleijnsa, J.M., et al.; Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease – The Rotterdam Study; The J. of Nutrition; 3100-5 (2014)
354. Shurgers, L.J.; et al.; Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats; Blood; 109(7):2823-31 (2006)
355. Knapen, M.H., et al.; Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomized clinical trial; Thromb. Haemost.; May; 113(5):1135-44 (2015)
356. Gallieni, M., and Fusaro, M.; Vitamin K and cardiovascular calcification in CKD – is patient supplementation on the horizon?; Kidney International; 86:232-34 (2014)
357. Shea, M.K. and Holden, R.M.; Vitamin K status and vascular calcification – Evidence from observational and clinical studies; Adv. Nutr.; 3:158-65 (2012)
358. Vermeer, C.; Vitamin K – the effect on health beyond coagulation – an overview; Food and Nutr. Res.; 56:5329-35 (2012)
359. Koitaya, N., et al.; Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women; J. Bone Miner. Meta.; Mar.; 32(2):142-50 (2014).
360. Schurgers, L.J., et al.; Post-translational modifications regulate matrix Gla protein function – importance for inhibition of vascular smooth muscle cell calcification; J. Thrombosis Haemostasis; 5:2503-11 (2007)
361. Theuwissen, E., et al.; The role of vitamin K in soft-tissue calcification; Adv. Nutr.; 3:166-73 (2012)
362. Caluwe, R., et al.; Vitamin K2 supplementation in haemodialysis patients – a randomized dose-finding study; Nephrol. Dial. Transplant 0:1-7 (2013)
363. Heap, L.C., Peters, T.J., Wessely, S.; Vitamin B status in patients with chronic fatigue syndrome; J Royal Soc Med; 92:183-5 (1999)
365. Gomm, W., et al.; Association of proton pump inhibitors with risk of dementia – A pharmacoepidemiological claims data analysis; JAMA Neurol.; Feb. 15, published online (2016)
366. Dharmarajan, T.S., et al.; Do acid lowering agents affect vitamin B12 status in older adults?; J. Am. Med. Dir. Assoc.; Mar.; 9(3):162-7 (2008)
367. Bahasher, H.; Methylcobalamin versus cyanocobalamin; The Association of Physicians of India; Chapter 139 (2011)
368. Van Asselt, D.Z.B.; et al.; Nasal absorption of hydroxycobalamin in healthy elderly adults; Br. J. Clin. Pharacol.; 45:83-8 (1998)
369. Izumi, K., et al.; Mecobalamin improved pernicious anemia in an elderly individual with Hashimoto’s disease and diabetes mellitus; Nihon Ronen Igakkai Zasshi; 50(4):542-5 (2013)
370. Singh, M.; Essential fatty acid, DHA, and human brain; Indian J. Pediatrics, 72:239-42 (2205)
371. Spector, A.A.; Essentiality of fatty acids; Lipids,; 34(1):S1-S3 (1999)
372. Yurko-Mauro, K.; Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline; Alzheimer’s & Dementia; Nov., 6(6):456-64 (2010)
373. Astarita, G., et al.; Deficient liver biosynthesis of docosahexaneoic acid correlates with cognitive impairment in Alzheimer’s disease; PLoS ONE; 5(9):1-8 (2010)
374. Quinn, J.F. et al.; Docosahexaenoic acid supplementation and cognitive decline in Alzheimer’s disease – a randomized trial; JAMA; Nov.; 304(17):1903-11 (2010)
376. Li, D., et al.; Alpha-Linolenic acid content of commonly available nuts in Hangzhou; Int. J. Vitam. Nutr. Res.; 76(1):18-21 (2006)
378. Brand, A., et al.; Metabolism of cysteine in astroglial cells: hypotaurine and taurine; J. Neurochem.; 71(2): 827-32 (1998)
379. Stipanuk, M.H., Ueki, L.; Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur; J. Inherit. Metab. Dis.; 34(1):17-32 (2011)
380. Lord, R.S., Fitzgerald, N.D.; Significance of low plasma homocysteine; Metametrix Clinical Lab., Dept. Sci. and Education, Norcross, GA (2006)
381. Ghandforoush-Sattari, M., et al.; Changes in plasma concentration of taurine in stroke; Neurosci. Lett., June 8; 496(3):172-5 (2011)
382. Shaw, C.A., and Tomljenovic; Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity; Immunol. Res.; 56:304-16 (2013)
383. Mullan, N., and Yasko, A.; Aluminum toxicity in mitochondrial dysfunction and ASD; Autism Sci. Digest; J. Autismone; 5:22-29 (2013)
384. Burrell, S.-A., and Exley, C.; There is (still) too much aluminum in infant formulas; BMC Pediatrics; 10(63):1-4 (2010)
385. Chuchu, N., et al.; The aluminum content of infant formulas remains too high; BMC Pediatrics; 13:162:1471-31 (2013)
386. Flarend, R., et al.; A preliminary study of the dermal absorption of aluminum from antiperspirants using aluminum-26; Food Chem. Toxicol.; Feb.; 39(2):163-8 (2001)
387. Bassioni, G., et al.; Risk assessment of using aluminum foil in food preparation; Int. J. Electrochem. Sci.; 7:4498-4509 (2012)
388. Muller, M., Ankr, M., Illing-Gunther, H.; Availability of aluminum from tea and coffee; Z. Lebensm Unters Forsch A; 205:170-73 (1997)
389. Barcena-Padilla, D.A., et al.; Aluminum contents in dry leaves and infusions of commercial black and green tea leaves: effects of sucrose and ascorbic acid added to infusions; Natural Resources, 2, 141-45 (2011)
390. Matsushima, F., Meshitsuka, S., Nose, T.; Nihon Eiseigaku Zasshi, Oct. 48(4):864-72 (1993)
391. Yokel, R.A. and McNamara, P.J.; Aluminum toxicokinetics: an updated minireview; Pharmacol. Toxicol.; 88:159-167 (2001)
392. Stahl, T., Taschan, H., Brunn, H.; Aluminum content of selected foods and food products, Environ. Sci. Europe; 23:37 (2011)
393. Fernandez-Lorenzo, J.R., et al.; Aluminum contents of human milk, cow’s milk and infant formulas; J. Ped. Gastroenterol. Nutr.; 28:270-275 (1999)
394. Yokel, R.A. and Florence, R.L.; Aluminum bioavailability from approved food additive leavening agent acidic sodium phosphate, incorporated into a baked good is lower than from water; Toxicol.; 227:86-93 (2006)
395. Hem, J.D.; Graphical methods for studies of aqueous aluminum hydroxide, fluoride, and sulfate; Geological water-supply paper 1827-B, U.S. Dept. of Interior, U.S. Gov. Printing Office, Washington (1968)
396. U.S. Code of Federal Regulations 21CFR82.51 and 21CFR82.1051; Listing of certified provisionally listed colors and specifications; Lakes FD&C and D&C (2015)
397. Stevens, L., et al.; Amounts of artificial food dyes in foods and sweets commonly consumed by children; Clin. Pediatr.; Apr. 24; published online (2014)
398. Stevens, L., et al.; Amounts of artificial food colors in commonly consumed beverages and potential behavioral implications for consumption in children; Clin. Pediatr.; 53:133-140 (2014)
399. Gupta, R.K., et al.; Adjuvant properties of aluminum and calcium compounds; Pharm. Biotechnol.; 6:229-48 (1995)
400. He, Q, et al.; Calcium phosphate nanoparticle adjuvant; Clin. Diag. Lab. Immunology; Nov.; 7(6):899-903 (2000)
401. Petrovsky, N. and Aguilar, J.C.; Vaccine adjuvants: current state and future trends; Immunol. Cell Biol.; 82:488-496 (2004)
402. Flarend, R.E, et al.; In vivo absorption of aluminum-containing vaccine adjuvants using 26Al; Vaccine; Aug.-Sept.; 15(12-13):1314-8 (1997)
403. Dabeka, R., et al.; Lead, cadmium, and aluminum in Canadian infant formulae, oral electrolytes, and glucose solutions; Food Addit. Contam.; June; 28(6):744-53 (2011)
404. Kazi, T.G., et al.; Determination of toxic elements in infant formulae by using electrothermal atomic absorption spectrometer; Food Chem. Toxicol.; 47:1425-29 (2009)
405. Hawkins, N.M., et al.; Potential aluminum toxicity in infants fed special infant formula; J. Ped. Gastroenterol. Nutr.; 19:377-81 (1994)
406. Chuchu, N., et al.; The aluminum content of infant formulas remains too high; BMC Pediatrics; 13:162:1471-31 (2013)
407. Anane, R., et al.; Bioaccumulation of water soluble aluminum chloride in the hippocampus after transdermal uptake in mice; Arch. Toxicol.; 69(8):568-71 (1995)
408. Graves, A.B., et al.; The association between aluminum-containing products and Alzheimer’s disease; J. Clin. Epidemiology; 43(1):35-44 (1990)
409. Wulff-Zottele, C., et al.; Sulphate fertilization ameliorates long-term aluminum toxicity symptoms in perennial ryegrass; Plant Physiol. Biochem.; Oct. 83:88-99 (2014)
410. Waldman, J.; Rust:The longest war; Simon & Schuster, Inc. (2014)
411. Verissimo, M.I.S., et al.; Aluminum migration into beverages: Are dented cans safe?; Sci. Tot. Environ.; Nov.; 405(1-3):385-88 (2008)
412. Seruga, M., et al.; Aluminum content of soft drinks from aluminum cans; Z. Lebensm. Unters. Forsch.; 198:313-16 (1994)
413. Seruga, M., etal.; Aluminum content of beers; Z. Lebensm. Unters. Forsch.; A 204:221-26 (1997)
414. Rondeau, V., et al.; Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study; Am. J. Epidemiol. 152:59-66 (2000)
415. Exley, C., Esiri, M.M.; Severe cerebral congophilic angiopathy coincident with increased brain aluminum in a resident of Camelford, Cornwall, UK; J Neurosurg Psychiatry; 77:877-879 (2006)
416. Whittier, J.; The value of tap water: A comparison of bottled, filtered, and tap water using the MWRA as a case study; Environ. Management I Harvard Extension School; Dec. 19 (2007). Judith Whittier was employed as a chemist by the Massachusetts Water Resource Authority
417. Crouse, D.N., Unpublished research performed by the author
418. Al-Muhtaseb, S.A., El-Naas, M.H., Abdallah, S.; Removal of aluminum from aqueous solutions by adsorption on date-pit and BDH activated carbons; J. Hazardous Mat.; 158:300-7 (2008)
419. Ekstrom, T.; Leaching of Concrete; Lund Institute of Technology – Division of Building Materials (2001)
420. Berend, K., and Trouwborst; T.; Cement-mortar pipes as a source of aluminum; J. AWWA, (7)91:91-100 (1999)
421. Miller, R.G., et al.; The occurrence of aluminum in drinking water, J. Am. Water Works Assoc.; 78:84 (1984)
422. Lettermann, R.D. and Driscoll, C.T.; Survey of residual aluminum in filtered water; J. Am. Water Works Assoc.; 80:154 (1988)
423. Cech, I. and Montera, J.; Spatial variation in total aluminum concentrations in drinking water supplies; Water Res.; 34:2703 (2000)
424. Srinivasan, P.T., et al.; Aluminum in drinking water: an overview; Water SA; Jan.; 25(1):47-56 (1999)
425. Strekopytov, S., and Exley, C.; The formation, precipitation and structural characterization of hydroxyaluminosilicates formed in the presence of fluoride and phosphate; Polyhedron, 24:1585-92 (2005)
426. Taylor, G.A., et al.; Alzheimer’s disease and the relationship between silicon and aluminum and water supplies in northern England; J. Epidemiology and Community Health; 49:323-28 (1995)
427. Schneider, C., et al.; The solubility of a hydroxyaluminosilicate; Polyhedron; 23:3185-91 (2004)
428. Dobrzynski, D.; Chemistry of neutral and alkaline waters woith low Al3+ activity against hydroxyaluminosilicate HASB solubility. The evidence from ground and surface waters of the Sudetes Mtns.; Aquat. Geochem.; 13:197-210 (2007)
429. Srinivasan, P.T., et al.; Aluminum in drinking water: and overview; Water SA, 25:47 (1999)
430. Nogaro, G., et al.; Aluminum sulfate (alum) application interactions with coupled metal and nutrient cycling in a hypereutropic lake ecosystem; Environ. Pollution; May; 176:267-74 (2013)
431. Culp, R.L. and Stolenberg, H.A.; Flouride reduction at La Crosse, Kan.; J. Am. Water Works Assoc.; 50:427 (1958)
432. Maier, F.J.; Defluoridation of municipal water supplies; J. Am. Water Works Assoc.; 45:874 (1953)
433. Ahemad, S.N. and Chaudhari, S.; Innovative method for domestic deflouridation of water; Proc. International Workshop on fluoride in drinking water – held in Bopal; p220 (2001)
435. Beltran-Aguilar, E.D., et al.; Prevalence and severity of dental fluorosis in the United States, 1999-2004; NCHS Data Brief, No. 93 (2010)
436. Griffin, S.O., et al.; Effectiveness of fluoride in preventing caries in adults, J. Dent. Res.; 86(5):410-415 (2007)
437. Marinho, V.C. et al.; Fluoride toothpastes for preventing dental caries in children and adolescents; Cochrane Database Syst. Rev.; 1:CD002278 (2003)
438. Marinho, V.C. et al.; Fluoride nouthrinses for preventing dental caries in children and adolescents; Cochrane Database Syst.Rev.; 3:CD002284 (2003)
439. Kandergan, K.; Groups stirring fluoride debate; Boston Globe; Jan 31, (2015)
440. Experiments performed at the Medical Research Endocrinology Dept., Newcastle upon Tyne, England, and the Physics Dept of the Univ. of Ruhana, Sri Lanka, showed that fluoridated water at 1 ppm, when used in cooking in aluminum cookware, concentrated the aluminum up to 600 ppm, whereas water without fluoride did not. Science news 131:73 (1983)
441. Cottrell, von T. L.; The strengths of chemical bonds; Butterworths Publications Ltd.; London; 2 (1958). Table 4.11 Bond dissociation energies
442. McBride, W. J. et al.; Radiofluorination using aluminum-fluoride (Al18F); EJNMMI Res.; 3:36 1-12 (2013)
443. Varner, J. A., et al.; Chronic administration of aluminum-fluoride or sodium-fluoride to rats in drinking water – alterations in neuronal and cerebrovascular integrity; Brain Res.; 784:284-98 (1998)
444. Choi, A.L., et al.; Developmental fluoride neurotoxicity: A systematic review and meta-analysis; Environ. Health Perspectives; 120(10):1362-68 (2012)
445. Sun, M.M., et al.; Measurement of intelligence by drawing test among children in the endemic area of Al-F combined toxicosis (in Chinese); J. Guiyang Med. College; 16(3):204-6 (1991)
446. Proposed HHS recommendation for fluoride concentration in drinking water for prevention of dental caries; U.S. Dept. HHS; Fed. Reg. 76(9) Jan. 13 (2011)
447. Patten, J., et al.; Oral absorption of radioactive fluoride and iodide in rats; Arch. Oral Biol.; 23:215-17 (1978)
448. Neafsey, E.J., and Collins, M.A.; Moderate alcohol consumption and cognitive risk; Neuropsychiatric Disease and Treatment; 7:465-484 (2011)
449. Sripanyakorn, S., et al.; The silicon content of beer and its bioavailability in healthy volunteers; British J. Nutrition; 91:403-9 (2004)
450. James, B.R., et al.; An 8-hyrdroxyquinoline method for labile and total aluminum in soil extracts; Soil Sci. Soc. Am. J.; 47:893-97 (1983)
451. Jacqmin-Gadda, H., et al.; Components of drinking water and risk of cognitive impairment in the elderly; Epidemiol.; May; 7(3):281-5 (1996)
452. Jugdaohsingh, R., et al.; Oligomeric but not monomeric silica prevents aluminum absorption in humans; Am. J. Clin. Nutr.; 71:944 (2000)
453. Jugdaohsingh, R., et al.; High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation; PLOS; Dec. 13, (2013)
454. Belles, M.,; Silicon reduces aluminum accumulation in rats – relevance to the aluminum hypothesis of Alzheimer disease; Alzheimer Dis. Addoc. Disord.; Jun; 12(2) 83-7 (1998)
455. Carlisle, E.M., and Curran, M.J.; Effect of dietary silicon and aluminum on silicon and aluminum levels in rat brain; Alzheimer Dis. Assoc. Disord.; 1(2):83-9 (1987)
456. Davenward, S., et al.; Silicon-rich mineral water as a non-invasive test of the ‘aluminum hypothesis’ in Alzheimer’s disease; J. Alzheimer’s Dis.; 33(2):423-30 (2013)
457. Brzezinski, M., et al.; Silica production and the contribution of diatoms to new and primary production in the central North Pacific, Mar. Ecol. Prog. Ser., 167;89-104 (1998)
458. Weigden, C.H. van der; Cahiers of Geochemistry – Silicon II: marine biogenic silica (2007)
460. Kaasalainen, H., and Stefansson, A.; The chemistry of trace elements in surface geothermal waters and steam, Iceland; Chemical Geology; 330-331:60-85 (2012)
461. Jacqmin-Gadda, H., et al.; Components of drinking water and risk of cognitive impairment in the elderly; Am. J. Epidemiol.; 139:48-57 (1994)
462. Select committee on GRAS substances – SCOGS-61, NTIS Pb 301-402/AS (1979)
463. Iler, R.K.; Soluble silicates; ACS Symposium Series, 194(7):95-114 (1982)
464. Alexander, G.B.; The reaction of low molecular weight silicic acids with molybdic acid; J. Am. Chem. Soc.; 75:5655-57 (1975)
465. Taylor, P.D., et al.; Soluble silica with high affinity for aluminum under physiological and natural conditions; J. Am. Chem. Soc.; 119, 8852-56 (1997)
466. Kozisek, F.; Health risks from drinking demineralized water; National Institute of Public Health, Czech Republic; Chapter 12; Water, sanitation, and health protection and the human environment; W.H.O.; Geneva (2005)
467. Demadis, K., et al.; Catalytic effect of magnesium ions on silicic acid polycondensation and inhibition strategies based on chelation; Industrial Eng. Chem. Research; 51:9032-40 (2012)
468. Sheikholeslami, R., et al.; Desalination and the environment water shortage – Pretreatment and the effect of cations and anions on prevention of silica fouling; Desalination; Sept.; 139(1-3):83-95 (2001)
469. Sripanyakorn, S., et al.; The comparative absorption of silicon from different foods and food supplements; Br. J. Nutr.; Sept.; 102(6):825-34 (2009)
470. Jurkic, L.M., et al.; Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy; Nutrition & Meatbolism; 10:2 (2013)
471. Richman, E.L., et al.; Choline intake and risk of lethal prostate cancer: incidence and survival; Am. J. Clin. Nutr.; 96:855-63 (2012)
472. Aguilar, F., et al.; Calcium silicate and silicon dioxide/silica acid gel added for nutritional purposes to food supplements; EFSA J.; 1132:1-24 (2009)
473. Aguilar, F., et al.; Choline-stabilized orthosilicic acid added for nutritional purposes to food supplements; EFSA J.; 948:1-23 (2009)
474. Fede, C., et al.; The toxicity outcomes of silica nanoparticles (Ludox) is influenced by testing techniques and treatment modalities; Anal. Bioanal. Chem.; 404:1789-1802 (2012)
475. Drueke, T.D.; Intestinal absorption of aluminum in renal failure; Nephrol. Dial. Transplant; 17[Suppl. 2]:13-16 (2002)
476. Rusanen, M.; Smoking, pulmonary and heart diseases and the risk of cognitive impairment and dementia: an epidemiological approach; Dissertations in Health Sci; 152 (2013)
477. Newhouse, P., et al.; Nicotine treatment of mild cognitive impairment; Neurology J; 78:91-101 (2012)
479. Report Brief – Ending the tobacco problem: a blueprint for the nation; Inst. Med.; May (2007)
480. Exley, C., et al.; Aluminum in tobacco and cannabis and smoking-related disease; Am. J. Med.; 118:276 (2006)
481. Dean, K., et al.; Sustainability of Brita Filters; Sustainability Science Group Project, Univ. Vermont; Dec. 6, (2010)
482. Verd Vallespir, S., et al.; Association between calcium content of drinking water and fractures in children; An. Esp. Pediatr.; Dec.; 37(6):461-5 (1992)
483. Jugdaohsingh, R.; Silicon and bone health; J. Nutr. Health Aging; 11(2):99-110 (2007)
484. Jugdaohsingh, R., et al.; Dietary silicon is positively associated with bone mineral density in men and premenopausal women; J. Bone Mineral Res.; 19(2): 297-307 (2004)
485. Reffitt, D.M., et al.; Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro; Bone; Feb.; 32(2):127-135 (2003)
486. Van Dyck, K., et al.; Indications of silicon essentiality in humans – Serum concentrations in Belgian children and adults, including pregnant women; Biological Trace Element Res.; 77:25-32 (2000)
487. Tanaka, T., et al.; Silicon concentrations in maternal serum and breastmilk in the postpartum period; Nihon Eiseigaku Zasshi; Oct.; 45(4):919-25 (1990)
488. Kaufmann, K.; Silica: The Forgotten Nutrient; Alive Books (1993)
489. Jugdaohsingh, R., et al.; Dietary silicon intake and absorption; Am. J. Clin. Nutr.; 75(5):887-93 (2002)
490. Dietzel, M.; Dissolution of silicates and the stability of polysilicic acid; Geochimica et Cosmochimica Acta; 64(19):3275-81 (2000)
491. European Food Safety Authority; EFSA J.; 950:1-12 (2009)
492. DeFina, L. F., et al.; The association between midlife cardiorespiratory fitness levels and later-life dementia – A cohort study; Ann. Intern. Med.; 158(3):162-68 (2013)
493. Martins, C., et. al; Effects of exercise on gut peptides, energy intake, and appetite; J. Endrocrin.; 193:251-58 (2007)
494. Berg, B.M., et. al; Peptide YY administration decreases brain aluminum in the Ts65Dn Down Syndrome mouse model; Growth, Development, Aging (GDA); 64(1-2):3-19 (2000)
495. Broom, D.R., et. al; Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males; Am. J. Physiol. Regul. Integr. Comp. Physiol.; 296:R29-35 (2009)
496. Jones, T.E., et al.; Long-term exercise training in overweight adolescents improves plasma peptide YY and resistin; Obesity; 17(6):1189-95 (2009)
497. Martins, C., et. al; The effects of exercise-induced weight loss on appetite-related peptides and motivation to eat; J. Clin. Endrocrinol. Metab.; 95:1609-16 (2010)
498. Batterham, R., et al.; Critical role of peptide YY in protein-mediated satiation and body-weight regulation; Cell Metabolism; Sept., 4:223-33 (2006)
499. Batterham, R., et al.; Inhibition of food intake in obese subjects by peptide YY3-36; New England J. Med.; Sept., 349(10):941- (2003)
500. Stokes, K.; Growth hormone responses to sub-maximal and sprint exercise; Growth Hormone IGF Res.; 13:225-38 (2003)
501. Ribeiro, L., et al.; Impact of acute exercise intensity on plamsa concentrations of insulin, growth hormone, and somatostatin; Acta Med. Port.; May-Jul.; 17(3):199-204 (2004)
502. Wideman, L., et al.; Synergy of l-arginine and GHRP-2 stimulation of growth hormone in men and women – modulation by exercise; Am. J. Physiol.; 279(4):R1467-77 (2000)
503. Maesako, M., et al.; Continuation of exercise is necessary to inhibit high fat diet-induced B-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice; PLOS one; 8(9)1-10 (2013)
504. Rosser, M. N., et al.; Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type; Neurosci. Let.; 20(3):373-77 (1980)
505. Arnsten, A.F.T.; Stress signaling pathways that impair prefrontal cortex structure and function; Nat. Rev. Neurosci.; 32:267-87 (2009)
506. Resveratrol, a popular supplement for improved mitochodial and cardiac function, inhibits PDE4A allowing the concentration of cAMP to rise and for this reason it can’t be recommended308)
507. Wang, M., et al.; Neuronal basis of age-related working memory decline; Nature; Jul.; 476(7359):210-3 (2011)
508. Bracken, R. M., et al.; Plasma catecholamine and norepinephrine responses to brief intermittent maximal intensity exercise; Amino Acids; 36:209-217 (2009)
509. Trapp, E. G., et al.; Metabolic response of trained and untrained women during high-intensity intermittent cycle exercise; Am. J. Physiol. Regul. Integr. Comp. Physiol.; 293:R2370-75 (2007)
510. Silverman, H G. and Mazzeo, R. S.; Hormonal responses to maximal and submaximal exercise in trained and untrained men of various ages; J. Gerontology; Biol. Sci.; 51A(1):B30-B37 (1996)
511. Bondareff, W., et al.; Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia; Neurology; Feb.; 32(2):164-8 (1982)
512. Michalski, B., et al.; Brain-derived neurotropic factor and TrkB expression in the “oldest-old”, the 90+ study: correlation with cognitive status and levels of soluble amyloid-beta; Neurobiology of aging; (2015)
513. Erickson, P.S., et al.; Neurogenesis in the adult human hippocampus; Nature; 4(11):1313-17 (1998)
514. Erickson, K. I., Exercise training increases size of hippocampus and improves memory; PNAS; 108(7):3017-22 (2011)
515. Minshal, C., Nadal, J., Exley, C.; Aluminum in human sweat; J. Trace Elem. Biol.; 28:87-88 (2014)
516. Exley, C.; Aluminum toxcity: a major threat to brain health; Alzheimer’s and Dementia Summit; Hosted by J. Landsman; July 31 (2016)
517. Xie, L., et al.; Sleep drives metabolite clearance from the adult brain; Science; Oct.; 342(6156) (2013)
518. Olmo, N.D., et al.; Taurine-induced synaptic potentiation and the late phase of long-term potentiation are related mechanistically; Neuropharmacology; 44(1):26-39 (2003)
519. Pizzorusso, T., et al.; Brain-derived neurotrophic factor causes cAMP response element-binding protein phosphorylation in absence of calcium increases in slices and cultured neurons from rat visual cortex; J. Neuroscience; 20(8):2809-18 (2000)
520. Luo, J., et al.; Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep – Implications for REM sleep and memory consolidation; J. Neuroscience; 33(15):6460-68 (2013)
521. Liguori, C., et al.; Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease; JAMA Neurol.; Oct. (2014)
522. Drago, D., et al.; Potential pathogenic role of β-amyloid1-42-aluminum complex in Alzheimer’s disease; Int. J. Biochem. & Cell Biol.; 40:731-46 (2008)
523. More, S.S., et al.; Early detection of amyloidopathy in Alzheimer’s mice by hyperspectral endoscopy; Invest. Ophthalmol. Vis. Sci.; 57:3231-38 (2016)
524. LaMorgia, C., et al.; Melanopsin retinal ganglion cell loss in Alzheimer’s disease; Ann. Neurol.; 79:90-109 (2016)
525. Figueiro, M. G., et al.; Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer’s disease and related dementia living in long-term care facilities; Clin. Interventions Aging; 9:1527-1537 (2014)
526. Leng, Y., et al.; Sleep duration and risk of fatal and nonfatal stroke; Neurology; 84:1-8 (2015)
527. Abe, T., et al.; Sleep duration is significantly associated with carotid artery atherosclerosis incidence in a Japanese population; Atherosclerosis; 217:509-13 (2011)
528. Khawaja, O., et al.; Sleep duration and risk of atrial-fibrillation (from the Physician’s Health Study); Am. J. Cardiol.; 111:547-551 (2013)
529. Gardner, R. C., et al.; Dementia risk after traumatic brain injury vs nonbrain trauma – The role of age and severity; JAMA Neurol.; Oct.; (2014)
530. McKee, A. C.; et al.; The spectrum of disease in chronic traumatic encephalopathy; Brain; 1-22 (2012)
531. Gillette-Guyonnet, S., et al.; Cognitive impairment and composition of drinking water in women: findings of the EPIDOS study; Am. J. Clin. Nutr.; 81:897-902 (2005)
532. Domingo, J.L., et al.; Citric, malic and succinic acids as possible alternatives to deferoxamine in aluminum toxicity; J. Toxicol. Clin. Toxicol.; 26(1-2):67-79 (1988)
533. Domingo J.L., et al.; Comparative effects of several chelating agents on the toxicity, distribution and excretion of aluminum; Hum. Toxicol.; May; 7(3):259-62 (1988)
534. Llobet, J.M., et al.; Acute toxicity studies of aluminum compounds: antidotal efficacy of several chelating agents; Pharmacol. Toxicol.; Apr.; 60(4):280-3 (1987)
535. Penniston, M.D., et al.; Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products; J. Endourol.; Mar.; 22(3);567-70 (2008)
536. Bredesen, D.E.; Reversal of cognitive decline: A novel therapeutic program; Aging; 6(9):707-17 (2014)
537. Wang, J. M., et al.; Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimers disease; PNAS; 107(14):6498-6503 (2010)
538. Irwin, R. W., et al.; Neuroregenerative mechanisms of allopregnanolone in Alzheimer’s disease; Frontiers Endrocrin.; 2:117:1-14 (2012)
539. Marx, C., et al.; The neurosteroid allopregnanolone is reduced in prefrontal cortex in Alzheimer’s disease” Biol Psychiatry; 60(12):1287-94 (2006)
541. Poly, C., et al.; The relation of dietary choline to cognitive performance and white matter hyper-intensity in the Framingham offspring cohort; Am J Clin Nutr; 94:1585-91 (2011)
542. Knobel, M.; Approach to a combined pharmacologic therapy of childhood hyperkinesis; Behav Neuropsychiatry; Mar. 6(1-12):87-90 (1974)
545. Masters, C. L., and Beyreuther, K.; Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the Aβ amyloid pathway; Brain, 129:2823-39 (2006)
546. Bramble, D.M., and Jenkins, F.A.; Mammalian locomotor-respiratory integration; Science, 262, 235-40 (1993)
547. Bramble, D.M., and Lieberman, D.L.; Endurance running and the evolution of Homo; Nature, 432, 345-52 (2004)
548. Carrier, D.R.; The energetic paradox of human running and hominid evolution; Current Anthropology, 25:483-95 (1984)
549. Cordain, L., et al.; The paradoxical nature of hunter-gatherer diets: meat-based, yet non-atherogenic; European J. Clin. Nutrition; 56(Suppl. 1):S42-S52 (2002)
550. Staller, J.E. and Carrasco, M.; Pre-Columbian foodways: Interdisciplinary approaches to food, culture, and markets in ancient Mesoamerica; Berlin, Springer-Verlag p317 (2009)
552. Kientz, M.A. and Dunn, W.; A comparison of the performance of children with and without autism on the sensory profile; Am. J. Occupational Therapy; 51:530-37 (1997)
553. Carper, R.A., et al.; Cerebral lobes in autism: early hyperplasia and abnormal effects; Neuroimage; Aug.; 16(4):1038-61 (2002)
554. Courchesne, E. and Pierce, K.; Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection; Curr. Opin. Neurobiol.; Apr.; 15(2):225-30 (2005)
555. Hernandez, R.N., et al.; Autism spectrum disorder in fragile X syndrome: a longitudinal evaluation; Am. J. Med. Genetics; Part A 149A:1125-37 (2009)
556. Baron-Cohen, S.; The facts: autism and Asperger syndrome; Oxford University Press, N.Y. (2008)
557. Lee, R.B.; What hunters do for a living, or how to make out on scarce resources; In Lee, R.B., DeVore, I., eds. Man the hunter. Chicago: Aldine Publishing Co., 30-48 (1968)
558. Mitani, N. and Ma, J.F.; Uptake of silicon in different plant species; J. Exp. Botany; 56(414):1255-1261 (2005)
559. Luxwolda, M.F.; Traditionally living populations in East Africa have a mean serum 25-hydoxyvitamin D concentration of 115 nmol/l; Br. J. Nutr.; 108(9):1157-61 (2012)
560. Luxwolda, M.F., et al.; Vitamin D status indicators in indigenous populations in East Africa; Eur. J. Nutr.; 52(3):1115-25 (2013)
561. Harvey, E.L. and Fuller, D.Q.; Investigating crop processing using phytolith analysis: the example of rice and millets; J. Archaeological Sci.; 32:739-752 (2005)
562. Milton, K.; Hunter-gatherer diets – a different perspective; Am. J. Clin. Nutr.; 71:665-7 (2000)
563. CDC – Breastfeeding among U.S. children born 2001-2011, CDC national immunization survey (2011)
564. Mothers Survey, Ross Products Division, Abbott Laboratories (2002)
565. Gilbert-Barness, E., et al.; Aluminum toxicity; Arch Pediatr. Adolesc. Med.; 152:511-512 (1998)
566. Sorenson, J.R.J., et al.; Aluminum in the environment and human health; Environ. Health Perspectives; 8:3-95 (1974) – See top of page 44 and page 49 in this paper
567. Kobayashi, K., et al.; 26Al tracer experiment by accelerator mass spectrometry and its application to the studies of amyotrophic lateral sclerosis and Alzheimer’s disease; Proc. Japan Acad.; 66 Ser. B, 189-192 (1990)
568. D’Eufemia, P., et al.; Abnormal intestinal permeability in children with autism; Acta Paediatr.; Sep.; 85(9):1079-9 (1996)
569. Mitani, N. and Ma, J.F.; Uptake of silicon in different plant species; J. Exp. Botany; 56(414):1255-1261 (2005)
570. Mohamed, F.E.B., et al.; Assessment of hair aluminum, lead, and mercury in a sample of autistic Egyptian children: Environmental risk factors of heavy metals in autism; Behavioral Neurology; Article ID 545674:1-9 (2015)
571. Csemansky, J.G.; et al.; CSF excitatory amino acids and severity of illness in Alzheimer’s disease; Neurology; Jun.; 46960:1715-20 (1996)
572. McCaddon, A., et al.; Total serum homocysteine in senile dementia of the Alzheimer type; Int. J. Geriaty. Psychiatry; Apr.; 13(4):235-9 (1998)
573. Gottfries, C.G., et al.; Early diagnosis of cognitive impairment in the elderly with the focus on Alzheimer’s disease; J. Neural Transm.; 105(8-9):773-86 (1998)
574. Clarke R., et al.; Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease, Arch. Neurol.; Nov.; 55(11):1449-55 (1998)
575. Ghanizadeh, A.; Increased glutamate and homocysteine and decreased glutamine levels in autism: A review and strategies for future studies of amino acids in autism; 35(5):281-86 (2013)
576. Morrison, L.D., et al.; Brain s-adenosylmethionine levels are severely decreased in Alzheimer’s disease; J. Neurochem.; Spet.; 67(3):1328-31 (1996)
577. James, S.J., et al.; Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism; Am. J. Clin. Nutr.; 80:1611-7 (2004)
578. Ansari, M.A. and Scheff, S.W.; Oxidative stress in the progression of Alzheimer disease in the frontal cortex; J. Neuropathol. Exp. Neurol.; Feb.; 69(2):155-167 (2010)
579. Tu, W.-J., et al.; Application of LC-MS/MS analysis of plasma amino acid profiles in children with autism; J. Clin. Biochem. Nutr.; Nov.; 51(3):248-249 (2012)
580. Ali, A., et al.; Hyperhomocysteinemia among Omani autistic children: a case-control study; Acta Biochemica Polonica; 58(4):547-551 (2011)
581. Pasca, S.P., et al.; High levels of homocysteine and low serum paraoxonase-1-arylesterase activity in children with autism; Life Sci.; Apr.; 78(19):2244-48 (2006)
582. Ghanizadeh, A.; Increased glutamate and homocysteine and decreased glutamine levels in autism: A review and strategies for future studies of amino acids in autism; Disease Markers; 35(5):281-86 (2013)
583. Rossignol, D.A., and Frye, R.E.; Mitochondrial dysfunction in autism spectrum disorders a systematic review and meta-analysis; Mol. Psychiatry; 17:290-314 (2012)
584. Swegert, C.V., et al.; Effect of aluminum-induced Alzheimer like condition on oxidative energy metabolism in rat liver, brain, and heart mitochondria; Mech. Ageing Dev.; Dec.; 112(1):27-42 (1999)
585. Robertson, C.E., et al.; Reduced GABAergic action in the autistic brain; Current Biology; 26:80-5 (2016)
586. Bogdashina, O.; Sensory perceptual issues in autism and Asperger Syndrome – Different sensory experiences – different perceptual worlds; Jessica Kingsley Publishers; London (2003)
587. Trombley, P.Q.; Selective modulation of GABAA receptors by aluminum; Am. Physiol. Soc.; 80:755-761 (1998)
588. Galanopoulou, A.S.; Dissociated gender-specific effects of recurrent seizures on GABAA signaling in CA1 pyramidal neurons: Role of GABAA receptors; J. Neurosci.; Feb.; 28(7):1557-67 (2008)
589. CDC, Morbidity and mortality weekly report, Prevalence of autism spectrum disorders – Autism and developmental disabilities monitoring network, 14 sites, United States (2008)
590. Hertz-Picciotto, I, and Delwiche, L.; The rise of autism rate and the role of age at diagnosis; Epidemiology; 20(1):84-90 (2009)
591. Fomon, S.J.; Infant feeding in the 20th century: formula and beikost; Am. Soc. Nutri. Sci.; J. Nutr. 131:409S-420S (2001)
592. Shurtleff, W., and Aoyagi, A.; History of Soymilk and other non-dairymilks; (2013)
593. Schultz, S., et al.; Breastfeeding, infant formula supplementation, and autistic disorder – the results of a parent survey; Internat. Breastfeeding J.; I:16:1-7 (2006)
594. Al-Farsi, Y.M.; et. al.; Effect of suboptimal breast-feeding on occurrence of autism: a case-control study; Nutrition; Jul.; 28(7-8):e27-32 (2012)
595. Shafai, T., et al.; The association of early weaning and formula feeding with autism spectrum disorders; Breastfeeding Medicine; 9(5):275-6 (2014)
596. Tanoue, Y., and Oda, S.; Weaning time of children with infantile autism; J. Autism dev. Disord.; Sep; 19(3):425-34 (1989)
597. Baxter, M.J., et al.; Aluminum levels in milk and infant formulae; Food Addit. Contam.; Sept-Oct.; 8(5):653-60 (1991)
598. CDC; Morbidity and Mortality Weekly Report – Surveillance Summaries; 63(2) March 28 (2014)
599. Saemundsen, E., et al.; Prevalence of autism spectrum disorders in an Icelandic birth cohort; DMJ Open; Jun. 20; 3(6) (2013)
600. Neik, T.T., et al.; Prevalence, diagnosis, treatment and research on autism spectrum disorders (ASD) in Singapore and Malyasia; International J. Spec. Ed.; 26(3):1-10 (2014)
601. Bernard-Opitz, V., et al.; Epidemiology of autism in Singapore: findings of the first autism survey; Internat. J. Rehab. Research; 24:1-6 (2001)
602. Cheslack-Postava, K., et al.; Increased risk of autism spectrum disorders at short and long interpregnancy intervals in Finland; J. Am. Acad. Adolescent Psyc.; 53(10):1074-81.e4 (2014)
603. Mostsafa, G.A., and Al-Ayadhi, L.Y.; Reduced serum concentrations of 25-hydroxy vitamin D in children with autism: Relation to autoimmunity; J. Neuroinflammation; 17(9):201 (2012)
604. Ginde, A.A., et al.; Demographic differences and trends of vitamin D insufficiency in the US population; 1988-2004; Arch. Intern. Med.; 169(6):626-32 (2009)
605. Skaaby, W.B., et al.; Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer; Cancer Epidemiol. Biomarkers Prev.; 23:1220-29 (2014)
606. Grant, W.B.; Why the prospective population-based study in Denmark did not find an association of 25-hydroxyvitamin D levels with cancer incidence rates; CEBP EPI-14-0530 (2014)
607. Code of Federal Regulations 21CFR107.100; Nutrient specifications; April (2015)
608. Hershberg, R.; et al.; Organ distribution of aluminum in uremic rats: influence of parathyroid hormone and 1,25-dihydroxyvitamin D3; Miner Electrolyte Metab.; 11:106-110 (1985)
609. Mayor, G.H., et al.; Impaired renal function and aluminum metabolism; Fed. Proc.; Oct.; 42(13):297-83 (1983)
610. Burnatowska-Hledin, M.A., et al.; Aluminum, parathyroid hormone, and osteomalacia; Spec. Top. Endrocrinol. Metab.; 5:201-26 (1983)
611. Klein, G.L., et al.; Serum levels of 1,25-dihyroxyvitamin D in children receiving parenteral nutrition with reduced aluminum content; J. Pediatr. Gastroenterol. Nutr.; Feb.; 4(1):93-6 (1985)
612. Stanhill, G. and Cohen, S.; Global dimming; a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences; Agric. For. Meteorol.; (4)107:255-78 (2001)
613. Brody, R.; What’s new in sun-care products; A tanless society by the year 2000; NY Times Business Day, July 24, (1988)
614. Notes on U.S. sun-care market for the year 2000; Soap and Cosmetics; April 76(4):44 (2000)
615. Notes on major brands of sunscreens and sunblocks for the year 2002; Chain Drug Review; June; 24(11):256 (2002)
616. Thomas, L. and Lim, H.W.; Focus on: suncreens; J. Drugs Dermatology; 2:174 (2003)
617. Blencowe, H., et al.; National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications; Lancet; 379:2162-72 (2012)
618. Kunzniewicz, M.W., et al.; Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants; J. Pediatrics; 164(1):20-25 (2014)
619. Sviridov, N.K.; Aluminum in human pathology; Lab. Delo. 12:699 (1966)
620. Unanyan, G.S.; Levels of copper, manganese, silicon, aluminum, and magnesium in the colostrum, intermediate and mature milk of mothers, and in mature and premature babies; Zh. Eksp. Klin. Med.; 7(6):96 (1967); Chem. Abstr. 69:34003 (1968)
621. Unanyan, G.S.; Characteristics of the level of the trace elements copper, manganese, silicon, aluminum, and magnesium in the blood of premature babies and in their mothers’ milk; Zh. Eksp. Klin. Med.; 9(1):38 (1969)
622. Grebennikov, E.P.; Content of copper, silicon, aluminum, titanium, and magnesium in the blood of newborns; Pediatriya (Moscow) 38(10):29 (1960)
623. U.S. Code of Federal Regulations, 21CFR201.323 Aluminum in large and small volume parenterals used in total parenteral nutrition (2014)
624. Taylor, L., et al.; Vaccines are not associated with autism – An evidence-based meta-analysis of case-control and cohort studies; Vaccine; 32(29):3623-29 (2014)
625. U.S. Code of Federal Regulations; 21CFR610.15; Part 610 – General biological products standards; Subpart B – General provisions; Sec. 610.15 Constituent material.
626. CDC Pinkbook of excipients in vaccines:
627. Kieth, L.S., et al.; Aluminum toxicokinetics regarding infant diet and vaccinations; Vaccine; May; 20 Suppl. 3:S13-7 (2002)
628. Redhead, K., et al.; Aluminum-adjuvated vaccines transiently increase aluminum levels in murine brain tissue; Pharmacol. Toxicol.; Apr.; 70(4):278-80 (1992)
629. Mitkus, R.J., et al.; Updated aluminum pharmacokinetics following infant exposures through diet and vaccination; Vaccine; Nov.; 29(51):9538-43 (2011)
630. Hem, S.L.; Elimination of aluminum adjuvants; Vaccine; May; 20 Suppl. 3:S40-3 (2002)
631. MRL’s, U.S. Dept. Health Human Serv., Agency for toxic substances and disease registry (2013)
632. Delong, G.; A positive association found between autism prevalence and childhood vaccination uptake across the U.S. population; J. Toxicol. Environ. Health A; 74(14):903-16 (2011)
633. Tomljenovic, L., and Shaw, C.A.; Do aluminum vaccine adjuvants contribute to the rising prevalence of autism?; J. Inorg. Biochem.; 105:1489-99 (2011)
634. Avishi-Eliner – Stressed-out or in (utero)?; Trends Neurosci.; 25(10):518-24 (2002)
635. Rhawn, J.; Neuropsychiatry, Neuropsychology, and Clinical Neuroscience; third ed. Lippincott Williams & Wilkins; (1996)
637. Kramer, M.L., Schulz-Schaeffer; Presynaptic synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies; J. Neuroscience, Feb. 27(6):1405(2007)
638. Fearnley, J.M. and Lees, A.J.; Ageing and Parkinson’s disease: substantia nigra regional selectivity; Brain; 114:2283-301 (1991)
639. Good, P.F., et al.; Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease. A LAMMA study; Brain Res.; 593:343-6 (1992)
640. Jenner, P., et al.; Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease; Ann. Neurol.; 32:882-7 (1992)
641. Costello, S., et al.; Parkinson’s disease and residential exposure to Maneb and Paraquat from agricultural applications in the central valley of California; Am. J. Epidemiol.; 169(8):919-26 (2009)
642. Tanner, C. M., et al.; Rotenone, Paraquat, and Parkinson’s disease; Environ. Health Perspect.; 119:866-72 (2011)
643. Crane, P.K.; et al.; Association of traumatic brain injury with late-life neurodegenerative conditions and neuropathological findings; JAMA Neurol.; Sept.; 73(9):1062-1069 (2016)
644. Tsigelny, I.F., et al.; Dynamics of alpha-synuclein aggregation and inhibition of pore-like oligomer development by beta-synuclein; FEBS J., Apr., 274(7):1862-77 (2007)
645. Dina, M., Farhang, A.; The inhibitory effects of cumin aldehyde on amyloid fibrillation and cytotoxicity of alpha-synuclein; Modares J of Med Sci (Pathobiology); Spring; 15(1):60-45 (2012)
646. Zhang, L., et. al; Reduced plasma taurine level in Parkinson’s disease; association with motor severity and levodopa treatment; Int. J. Neurosci.; May 23:1-24 (2015).
647. Engelborghs, S., et. al; Amino acids and biogenic amines in cerebrospinal fluid of patients with .Parkinson’s disease; Neurochem. Res.; Aug., 28(8):1145-50 (2003)
648. Thakur, N., et al.; COPD and cognitive impairment: the role of hypoxemia and oxygen therapy; Int. J. Chronic Obstructive Pulmonary Dis.; 5:263-9 (2010)
649. Li, J. and Fei, G.H.; The unique alterations of hippocampus and cognitive impairment in chronic obstructive pulmonary disease; Respir. Res.; 14:140 (2013)
650. Zhang, H., et al.; Reduced regional gray matter volume in patients with chronic obstructive pulmonary disease – a voxel-based morphometry study; Am. J. Neuroradiol.; 34:334-9 (2013)
651. Albrecht, J.; Role of ammonia in the pathogenesis of hepatic encephalopathy; Hepatic Encephalopathy, Mullen, K.D., Prakash, R.K. (Eds.), Springer, Chapter 2, p7-17 (2012)
652. Yaffe, K., et al.; Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus; JAMA Intern. Med., 173(14):1300-06 (2013)
653. Fraser, W.D.; Hyperparathyroidism; Jul.; 374(9684):145-58 (2009)
655. Seccareccia, D.; Cancer-related hypercalcaemia; Canadian Family Physician, March, 56:244-46 (2010)
656. Cann, C.E., et al.; Aluminum uptake by the parathyroid glands; J. Clin. Endrocrin Metab.; 49:543-45 (1979)
657. Diaz-Corte, C., et al.; Effect of aluminum load on parathyroid hormone synthesis; Nephrol. Dial. Transplant; 16:742-45 (2001)
658. Desouza, L.A., et al.; Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain; Mol. Cell. Neurosci.; 29, 414-26 (2005)
659. Kumar, N., Kar, A.; Pyrroloquinoline quinone has the potential to ameliorate PTU induced lipid peroxidation and oxidative damage in mice; Int. J. Pharm. Pharmaceutical Sci.; 6(2):880-885 (2014)
660. Ambrogini, P., et al.; Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat; Neuroendrocinolgy; 81(4):244-53 (2005)
661. Sommer, W.; Erkrankung des Ammon’s horn als aetiologis ches moment der epilepsien; Arch. Psychiatr. Nurs.; 10:631-75 (1880)
662. Nelson, P.T., et al.; Alzheimer’s disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies; Acta Neuropathol.; May 121(5):571-87 (2011)
663. Giasson, B.I., et al.; Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy and the spectrum of diseases with alpha synuclein inclusions; The neuropathology of dementia; 2nd Editon; Cambridge University Press; 353-7 (2004)659. Park, S.-J., et al.; Resveratrol ameliorates ageing-related metabolic phenotypes by inhibiting cAMP phosphodiesterases; Cell; 148(3):421-433 (2012)
664. Park, S.-J., et al.; Resveratrol ameliorates ageing-related metabolic phenotypes by inhibiting cAMP phosphodiesterases; Cell; 148(3):421-433 (2012)
665. Vitvitsky, V., et al.; A functional transsulfuration pathway in the brain links to glutathione homeostasis; J. Biolog. Chem. 281(47) 35785-93 (2006)
666. Tallen, H.H., et al.; L-Cystathionine in human brain; J. Biol. Chem.; 230:707-16 (1958)
667. Finkelstein, J.D.; Methionine metabolism in mammals; J. Nutr. Biochem.; May, 1:228 (1990)
668. Banks, W.A., and Kastin, A.J.; Aluminum alters the permeability of the blood-brain barrier to some non-peptides; Neuropharmacology; may; 24(5):407-12 (1985)
669. Kaya, M., et al.; Effect of aluminum on the blood-brain barrier permeability during nitric oxide-blockade-induced chronic hypertension in rats; Biol. Trace Elem. Res.; Jun.; 92(3):221-30 (2003)
670. Song, Y., et al.; Effects of acute exposure to aluminum on blood-brain barrier and the protection of zinc; Neurosci. Lett.; Nov.; 445(1):42-6 (2008)
671. Chadobski, A., et al.; Blood-brain barrier pathophysiology in traumatic brain injury; Transl. Stroke Res.; Dec.; 2(4):492-516 (2011)
672. Price, L., et al.; Chapter 4 Blood-brain barrier pathophysiology following traumatic brain injury; Translational research in traumatic brain injury; Laskowitz, D., and Grant, G. Editors; Boca Raton, FL, CRC Press/Taylor and Francis Group (2016)
673. Mooradian, A.D.; Effect of aging on the blood-brain barrier; Neurobiology of Aging; 9:31-9 (1988)
674. Farrall, A.J. and Wardlaw, J.M.; Blood-brain barrier: ageing and microvascular disease – – systematic review and meta-analysis; Neurobiol. Aging; Mar.; 30(3):337-52 (2009)
675. Kortekaas, R., et al.; Blood-brain barrier dysfunction in parkinsonian midbrain in vivo; Ann. Neurol.; 57:176-9 (2005)
676. Gray, M.T. and Woulf, J.M.; Striatal blood-brain barrier permeability in Parkinson’s disease; J. Cerebral Blood Flow and Metab.; 35:747-50 (2015)
677. Agarwal, R., and Shukla, G.S.; Potential role of cerebral glutathione in the maintenance of blood-brain barrier integrity in rat; Neurochem. Res.; Dec.; 24(12):1507-14 (1999)
678. Exley, C.; Hydroxyaluminosilicate formation in solutions of low total aluminum concentration; Polyhedron; 11(15):1901-7 (1992)
679. Hosokawa, S., et al.; Trace elements and complications in patients undergoing chronic hemodialysis; Nephron.; 55(4):375-9 (1990)
680. Roberts, N.B., and Williams, P.; Silicon measurements in serum and urine by direct current plasma emission spectrometry; Clin. Chem.; 36(8):1480-85 (1990)
681. D’Haese, P.C., et al.; Increased silicon levels in dialysis patients due to high silicon content in drinking water, inadequate water treatment procedures, and concentrate contamination: A multicenter study; Nephrol. Dial. Transpant; 10(10):1838-44 (1995)
682. Van Landeghem, G.F., et al.; Aluminum speciation in cerebrospinal fluid of acutely aluminum-intoxicated dialysis patients before and after desferrioxamine treatment; a step in the understanding of the element’s neurotoxicity; Nephrol. Dial. Transpant; 12:1692-98 (1997)
683. Parry, R.; et al.; Silicon and aluminum interactions in hemodialysis patients; Nephron. Dial. Transplant; 13(7):1759-62 (1998)
684. Reusche, E., and Seydel, U.; Dialysis associated encephalopathy light and electron microscopic morphology and topography with evidence of aluminum by laser microprobe analysis; Acta Neuropathol.; 86:249 (1993)
685. Candy, J.M., et al.; Aluminosilicates and senile plaque formation in Alzheimer’e disease; Lancet; Feb.; 1(8477):354-7 (1986)
686. Moretz, R.C., et al.; Microanalysis of Alzheimer’s disease NFT and plaques; Envriron. Geochem. Health; March; 12(1):15-6 (1990)
687. Schreeder, M.T, et al.; Dialysis encephalopathy and aluminum exposure: an epidemiological analysis; J Chronic Dis.; 36(8)581-93 (1983)
688. Farnell, B.J., et al.; Calcium metabolism in aluminum encephalopathy; Exp. Neurol.; April.; 88(1):68-83 (1985)
689. Sidhu, S.K. and Nicholson, J.W.; A review of glass-ionomer cements for clinical dentistry; J. Funct. Biomater.; 7(3):16 (2016)
690. Hantson, P., et al.; Fatal encephalopathy after otoneurosurgery procedure with an aluminum containing biomaterial; J. Toxicol. Clin. Toxicol.; 33(6):645-8 (1995)
691. Shirabe, T., et al.; Autopsy case of aluminum encephalopathy; Neuropathology; Sep.; 22(3):2016-10 (2002)
692. Flaten, T.P.; An investigation of the chemical composition of Norwegian drinking water and its possible relationships with the epidemiology of some diseases. Dept. of Chem.; Norwegian Univ. Sci. and Tech., Trondheim, Norway (1986)
693. Vogt, T.; Water quality and health: Study of a possible relation between aluminum in drinking water and dementia. Sosiale og Okonomiske Studier no. 61. Oslo: Statistics Norway (1986)
694. Forbes, W.F., et al.; Geochemical risk factors for mental functioning, based upon the Ontario Longitudinal Study of Aging (LSA) V. Comparison of the results, relevant to aluminum water concentrations, obtained from LSA and death certificates mentioning dementia; Can. J. Aging; 14:642-56 (1995)
695. Canadian Study of Health and Aging Group; The incidence of dementia in Canada in 1991; Neurology; July; 55(1):66-73 (2000)
696. Forbes, W.F., and Agwani, N.; Geochemical risk factors for mental functioning, based upon the Ontario Longitudinal Study of Aging (LSA) III. The effects of aluminum-containing compounds; Aging 13:488-98 (1994)
697. Martyn, C.N., et al.; Aluminum concentrations in drinking water and risk of Alzheimer’s disease; Epidemiology; 8:281-86 (1997)
698. Forster, D.P., et al.; Risk factors in clinically diagnosed presenile dementia of the Alzheimer’s type: A case-control study in northern England; J. Epidemiol. Community Health; 49:253-58 (1995)
699. Frecker, M.F.; Dementia in Newfoundland: identification of a geographical isolate?; J. Epidemiol. Community Health; 45:307-11 (1991)
700. Doll, R.; Review: Alzheimer’s disease and environmental aluminum; Age Aging; 22:138-53 (1993)
701. Wettstein, A.; et al.; Failure to find a relationship between mnestic skills of octogenarians and aluminum in drinking water; Int. Arch. Occup. Environ Health 63:97-103 (1991)
702. Wood, D.J., et al.; Bone mass and dementia in hip fracture patients from areas with different aluminum concentrations in water supplies; Age Aging; 17:415-19 (1988)